您好,欢迎来到尔游网。
搜索
您的当前位置:首页聚合物陶瓷复合材料

聚合物陶瓷复合材料

来源:尔游网
Anal.Chem.XXXX,xxx,000–000

Field-FlowFractionation:AddressingtheNanoChallenge

S.KimRatanathanawongsWilliams,J.RayRunyon,andAkramA.AshamesColoradoSchoolofMines

Field-flowfractionationiscomingofageasafamilyofanalyticalmethodsforseparatingandcharacterizingmacromolecules,nanoparticles,andparticulates.Thecapabilitiesandversatilityofthesetechniquesaredis-cussedinlightofthechallengesthatarebeingaddressedinanalyzingnanometer-sizedsamplecomponentsandtheinsightsgainedthroughtheiruseinapplicationsrangingfrommaterialssciencetobiology.(Tolistentoapodcastaboutthisfeature,pleasegototheAnalyticalChemistrymultimediapageatpubs.acs.org/page/ancham/audio/index.html.)In1966,thelateJ.CalvinGiddingsintroducedfield-flowfraction-ation(FFF),achromatography-liketechniquewithanessentiallyone-phasenaturethatgivesitapotentialadvantageinseparatingmacromoleculesandcolloids.1Theensuingyearsbroughttre-mendousinnovationsininstrumentationthatutilizeddifferenttypesoffields,advancesinunderstandingthebehavioroftheselargeanalytesinlaminarflowstreamsinconfinedchannels,andnumerousapplicationsthatdemonstratedtheversatilityofFFF.However,asrecentlyasthemid-1990s,FFFwasstilldescribedasaninterestingtechniquelookingforaniche.Researchinfieldssuchasnanoscienceandnanotechnologyandbiotechnologysubsequentlyexploded.Itisrecognizedthatthesenanometer-sizedanalytesareusuallynotmonodispersedandinfactcanundergodynamicinteractionsthatcausequantitativeshiftsinsubpopulations.Newmetrologiesandanalyticalmethodstoinvestigatepropertiesandvalidatetheoreticalandbehavioralmodelsinthissizeregimewereurgentlyneeded.Asthe“nano”revolutionunfolds,challengesarisefromthediverseprimaryandsecondarypropertiessuchassize,shape,architecture,composition,opticalandelectronicproperties,andtoxicityofnanoparticles,polymers,andnanocomposites.Regula-toryagenciesareconsideringmorerigorousmonitoringofaggregatesinprotein-basedpharmaceuticalsandvaccinesbecauseofconcernsaboutreducedefficaciesandpotentialimmunogenicresponses.Manyquestionsaboutthefunctionofsubcellularcomponentsthatwerepreviouslydisregardedhavebecomethefocusofattention;someofthesecomponentsarealsopotential10.1021/ac101759zXXXXAmericanChemicalSociety

ROBERTGATESdiseasebiomarkers.Separatingthesecomplexandpolydispersesamplesintosimplerunitsforfurtheranalysisandtestingiskeyingainingdetailedinsightsthatwouldotherwisebeunachievable.FFFisafamilyoftechniquesthatwasdesignedtoseparateandmeasurephysicochemicalpropertiesofcomplexmacromo-lecular,colloidal,andparticulatematerials.1-3Theseparationoccursbydifferentialdisplacementinaflowingstreamofliquidthatcarriestheseparatedcomponentstoadetector.Physico-chemicalpropertiesofthespeciesdeterminethemeasuredretentiontime,tr,andthuscharacterizationisusuallyachievedsimultaneouslywithseparation.Theeasyelutionandcollectionofhighlyuniformsamplecomponentsfromthechanneloutlet

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

A

isamajorstrengthofFFFtechniques.Eachfractioncanbeexaminedeitherusingofflinetechniquesoronlinemethodssuchaslightscattering,MS,andelementspecificdetectorstoobtaincomplementaryinformationaboutdifferenttypesofdistributions.TheseparationmechanismandopenparallelplateFFFchanneldesignresultsinotherimportantcharacteristicssuchaslowshearrates(idealforinvestigatingfragilespecies),lowsampleloss,tunableselectivityandspeed,applicabilitytodiversesamplesspanningabroadmolecularweight/sizerange,andabilitytoseparateaccordingtodifferentphysicochemicalproperties.

ThegoalsofthisarticlearetobrieflyrevisitthebasicprinciplesofFFF;demonstratethestrengthsoftheFFFfamilyoftechniquesandhowtheyhavebeenusedtoaddressanalyticalchallengesencounteredwithnanometer-sizedanalytespeciesandcomplexsamples;highlightrecentadvancesinFFFinstrumentationinclud-ingtheimportanceofhyphenatedmethods;andincreasetheawarenessofresearcherswhomaybenefitfromFFF’smanycapabilitiesforanalyzingmacromoleculesandnanoparticles.(“Nano”iscommonlyusedinreferencetomatterwithdimensions∼1-100nmthatexhibituniquephenomena.4Theauthorshaveincludedmacromoleculesinthisdiscussionbecausetheyareofteninthenanometersizerange.)BASICPRINCIPLES

FFFseparationisanessentialstepinmeetingthenanochallengebecausemanysamplespossesscontinuousdistributionsinoneormorepropertiesand/orconsistofmultiplecomponentsthatspanawidesizeormolecularweightrange.FFFtakesplaceinathin,ribbon-likechannelinwhichalaminarflowwithaparabolicflowvelocityprofileissubjectedtoaperpendicularlyappliedexternalfield.2TheunderlyingprincipleofallFFFtechniquesisbasedonthebalancebetweenfield-inducedmasstransportofanalytetowardsanaccumulationwallanddiffusionawayfromthiswallcausedbytheresultingconcentrationgradient.Thisleadstotheformationofsamplecloudswhich,atsteadystate,haveequilibriummeanlayerthicknessesl1,l2,...etc.withdifferentlvaluescorrespondingtodifferentflowvelocitystreamlinesoftheparabolicflowprofileandthusdifferenttr.Ideally,eachsamplecomponenthasauniquelorD/|U|whereDisthediffusioncoefficientandUisthefield-inducedmigration.ThesmallertheDand/orthelargertheinteractionwiththefield,thesmallerthelvalueandthelongerthesamplecomponentremainsintheFFFchannel.Therelationshipbetweenl,tr,andtheforce,F,exertedonasingleparticleormacromoleculebytheappliedfieldcanbeapproximatedbytheequation2,3tr)

w|F|wt

0

6l)6kT

(1)

wheret0isthevoidtime,wisthechannelthickness,kis

Boltzmann’sconstant,andTisabsolutetemperature.Theassumptionsarethatallparticlesarenoninteractingpointmassesandw.l(necessaryforefficientseparation).TheaboveequationshowsthatFgovernsbothretentionandseparationbecausedifferencesintheforceexperiencedbyvariousparticles,∆F,willresultinroughlyproportionaldifferencesintr.ThemagnitudeofFand∆Fdependsonparticleproperties,fieldstrength,andthetypeoffieldemployed.

B

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

Virtuallyanytypeoffieldcanbeusedaslongasitinteractswithsomephysicochemicalpropertyofthesamplecomponentstodrivethemtotheaccumulationwall.ThishasgivenrisetomultipletechniqueswithintheFFFfamily,manyofwhichhaveyettobecommercialized,e.g.,dielectrophoretic,magnetic,electri-cal,andacoustic.5-8Thermal,sedimentation,andcrossflowFFFarecommerciallyavailableandarethusthemostcommonlyusedFFFtechniques.ThermalFFF(ThFFF).ThisfirstexperimentallyrealizedFFFtechniqueutilizesatemperaturegradienttodrivesamplestotheaccumulationwall.9Theribbon-likechannelissandwichedbe-tweentwoheatconductiveblocksthatareindividuallytemperaturecontrolled,onewithheatingelementsandtheotherwithcirculat-ingchilledwaterorcoolant.Temperaturedifferencesbetweenthehotandcoldwallscanbeashighas∼100K,whichwhenappliedacrossthechannelthicknessof∼10-2cm,translatestogradientsthatare∼104Kcm-1.ThFFFwasoriginallyusedforsyntheticpolymersinorganicsolventsbuthasbeenexpandedtonanoparticlesinaqueousandnonaqueoussolvents.10,11TheeffectivedrivingforceoneachpolymermoleculeisF)kTDTdTDdx

(2)

whereDTisthethermaldiffusioncoefficientanddT/dxistheappliedtemperaturegradient.CombiningEquations1and2revealsthattrisproportionaltothefieldstrength(dT/dx)andtheSoretcoefficient,DT/D,andthatthemeasurementoftryieldsDT/D.IfDTisknown,Dcanbecalculated,whichsubsequentlyyieldsmolecularweightMWbecauseofthedependenceD=A(MW)-bwhereAisanexperimentallydeterminedproportionalityconstantandbis∼0.6forathermodynamicallyfavorablesolvent.Alternatively,ifDisknown,DTcanbecalculated.ThFFFisoneofthemostintriguingtechniquesoftheFFFfamilybecausetheDTtermcanbeusedtoaddressanalyticalchallengesassociatedwithpolymerandnanoparticleinterfacialcompositionandpolymermicrostructureandarchitecture.12However,retentiontimesaredifficulttocalculatebecausethermaldiffusioninliquidsisnotfullyunderstoodandDTvaluesspecifictotheparticularpolymerandnanoparticlearenotwidelyavailable.ThissituationisbeingremediedbycouplingThFFFtodetectorsthatmeasureMWindependentlyandbyongoingeffortstoevaluateexistingtheoriesforpredictingDT.13SedimentationFFF(SdFFF).TheFFFchannelencirclesaspinningcentrifugebasketthatgeneratesdifferentialaccelerationforcesondifferentparticles.14Theforceexperiencedbyaparticlecanbewritteninvariousformstoshowtherelationshipbetweenthefieldstrength(oracceleration,G)andtheeffectivemass(truemassminusbuoyantmass),m′,particlevolume,Vp,diameter,d,andthedifferenceindensitybetweentheparticleandcarrierliquid,∆F.

F)m󰀁G)Vp|∆F|G)

π6

d3

|∆F|G(3)

SubstitutingFintoEquation1yieldsaproportionalitybetweentrandd3thatexplainsSdFFF’sabilitytobaselineresolveparticleaggregatesrangingfromsingletstooctuplets.15A10×differ-

enceindwillyielda1000×differenceintroradiameter-basedselectivity(definedas|dlogtr/dlogd|)of3.Thoughthislevelofselectivityishighlydesirableincertainsituations,analysesforpolydispersesamplesarelengthy.Thisisreadilyresolvedbydecreasingthefieldstrengthaccordingtoatheoreticalfunctionthatmaintainsaconstantfractionatingpowerthrough-outtheseparation.3Theproportionalitybetweentrandm′isalsoimportantbecauseitallowsSdFFFtobeusedasamicrobalanceformeasuringminute(10-16-10-18g)changesinnanoparticleeffectivemass.16,17CrossflowFFF(FlFFF).CrossfloworflowFFFisthemostcommonlyusedFFFtechnique.Acrossflowoffluidtransportsthesampletotheaccumulationwallwhich,inthiscase,isasemipermeablemembranelaidoverasupportingfritpanel.18TheoreticalcalculationshaveconfirmedthatthetypicalFlFFFcrossflowflowratesdonotperturbtheparabolicflowprofile.19Intheory,FlFFFisuniversallyapplicabletoallanalytespecies.Inpractice,thelowersizelimitissetbythemolecularweight-orsize-cutoffofthemembrane,whichdeterminesnotonlytheanalytespeciesretainedinthechannel,butalsothehighestcrossflowratesthatcanbeused.Thedrivingforceexertedonasingleparticleisrelatedtothefrictioncoefficient,f,viscosity,η,andtheStokesorhydrodynamicdiameter,d,bythefollowingseriesofequations:F)f|U|)kT

|U|

D

)3πη|U|d(4)

whereUissynonymouswithcrossflowvelocity.Thisequation(andEquation1)showsthattrisdependentontheanalyte’sdiffusioncoefficient,whichinturnisrelatedtoasphereequivalenthydrodynamicd.Assumingallparticlesinthesamplearesimilarinshape,qualitativeinterpretationofthemeasuredfractogramisstraightforwardbecausetrispropor-tionaltodandthefractogramreflectsthesizedistribution.DifferentvariantsoftheFlFFFchanneldesignincludetheoriginalsymmetricchannelwithtwopermeablewalls,today’smostcommonlyusedasymmetricchannelwithonenon-permeablewall(AsFlFFF,alsoknownasAF4),20andthehollowfiberchannel.21UnlikeThFFFandSdFFFchannels,whichareconstructedfromruggedmetallicmaterials,therelativelydelicatemembraneaccumulationwallinFlFFFchannelsrequirescarefultreatmentandperiodicreplacement.

DielectrophoreticFFF(DEP-FFF).Dielectrophoresisisthemigrationofaparticleinanon-uniformelectricfieldcausedbyelectrostaticinteractionsbetweenthefield-inducedpolarizationintheparticleandthefield.5,22TheDEPforceexperiencedbyasphericalparticleofradiusrisrelatedtothepermittivity(ordielectricconstant)ofthemedium,εs,andtheimposedmogeneouselectricfield,binho-E

.F)2πr3εsfcmb∆

|Eb|2(5)

TheClausius-Mossottifactor,fcm,takesintoaccountcomplexpermittivitiesoftheparticleandthesuspendingmediumanddeterminestherelativestrengthanddirectionoftheDEPforceonaparticleasafunctionoftheappliedfieldfrequency.Hence,particlescanbeseparatedinaDEP-FFFsystemonthebasis

ofdifferencesineffectivedielectricproperties,suchassemi-conductorparticlebandgapsandelectroniccharacteristics.23DEPforcesalsodependonthespatialdistributionoftheappliedelectricalfield,andadvancesinmicrofabricationtechnologieshaveenabledtheproductionofinterdigitatedmicroelectrodearrayscapableofproducinglargeDEPforceswithsmallappliedvoltages.5,22MagneticFFF(MgFFF).VariousMgFFFinstrumentcon-figurationshaveachievedvaryingdegreesofsuccess.ThemostrecentisaquadrupoleMgFFF(QMgFFF)instrumentcomprisedofahelicalseparationchannelmountedinanaxisymmetricmagneticfield.6Theoutwardlyradialmagneticfieldsetsupafieldgradientacrossthechannel,andthemagnitudeofthegradient’sinteractionwiththemagneticcomponentoftheparticlesdeter-minestr.Theforceexperiencedbyasingleparticleundertheinfluenceofthemagneticfieldgradientisgivenby

F)VmM|∇B|

(6)

whereVmisthevolumeofthemagnetizedcomponentofthe

particle,Misthemagnetizationofthiscomponent(whichisrelatedtomagneticsusceptibility),and∇BisthegradientinmagneticfieldB.

Summary.Equations1-6describethenormalmodesepara-tionmechanismthatanalytessmallerthan∼1µmexperienceandexplainwhysmall(highdiffusioncoefficient)analyteselutefirst.Foranalytes>∼1µm,thesteric-hyperlayerseparationmechanismreverseselutionorder,3butthisFeaturefocusesonnano-sizedmaterials,whichareusuallyseparatedbythenormalmode.Thesesixequationsalsoprovideinsightintoexperimentalparametersandsamplepropertiesthatgovernretention,thepropertiesbywhichthesamplecomponentscanbesortedintoaseriesofmoreuniformbins,andtheinformationthatcanbegarneredusingeachtypeoffield.Moreover,theelutionprofileorfractogramcanbetransformedintodistributionsspecifictothefieldthatwasemployed,e.g.,sizedistributionsforFlFFFormassordensitydistributionsforSdFFF.Increasingly,FFFcoupledwithorthogonalmethodsprovidescomplementaryinformationandthusamorecompletepictureofsamplecharacteristics.ThisnextsectiondemonstratestheimportantfeaturesofFFF,drawingonexamplesthatincludemacromoleculesandnanoparticles.FFFSEPARATIONANDANALYSIS

SelectivityandComplexSamples.FFFtechniquesseparateanalytesaccordingtodifferentpropertiesdependingonthefieldapplied.Theselectivityoftheseparationdependsontherelation-shipbetweenretentiontimeandthespecificsamplepropertybeingprobed.Forexample,becausetr∝d3forSdFFFandtr∝dforFlFFF,thediameter-basedselectivitiesare3and1,respectively.Thehighertheselectivity,thesmallerthediffer-enceinsizethatcanbedifferentiatedbyretentiontime.Thisisthefigureofmeritintheseparationofpolydispersesamplesbecausethecontinuousdistributionsinsize,mass,etc.areexpectedtoproducebroadelutionprofiles.Differentcompo-nentseluteatdifferenttimeseventhoughdistinctpeaksarenotevident.Hence,thetraditionalmetricofnumberoftheoreticalplatesisnotasusefulfordescribingtheeffective-nessoftheseparationofnon-uniformnano-sizedmaterials.

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

C

Figure1.AsFlFFFanalysisofribosomalsamplestakenin(a)theexponentialbacterialgrowthphaseand(b)5hafterinoculationinthemidexponentialphase.Thetwotracesin(b)representabsorbanceatλ)260nm(A)and280nm(B).Reprintedfromref24withpermissionfromElsevier.

Themainchallengesinbiotechnologyareunderstandinggrowthpropertiesofcellculturesandoptimizingproteinyields.Forexample,thetotalamountofribosomalmaterialpercellandtherelativeamountoftheassembled70Sribosomeareindicatorsofthecells’proteintranslationcapacity.Thus,separationandquantitationoftypesofribosomalmaterialcanprovideinvaluableinsightsforestablishingoptimumbioreactorconditions.Figure1demonstratesthelevelofresolutionobtainedbyAsFlFFFinthelownanometersizeregioninacomplexribosomalsample.24TheAsFlFFFfractogramsshowthatthe30Sand50Sribosomalsubunits(∼16and18nm)and70Sassembledunit(∼25nm)areclearlyresolvedandseparatedfromtRNAandproteinswithin8min.Theanalysistimewasoptimizedsothatasamplecanbewithdrawnfromthebioreactor,processed,andanalyzedin16mincycles.TheadvantageofaseparationstepoversimplymeasuringtheaveragesizeofcomponentsintheentiresampleisclearlydemonstratedbyFigure1b.Thefractogramfromasamplecollectedatthemid-exponentialgrowthphaseshowsapeakthatisbelievedtobe100Sribosomalparticles,acomponentthatwouldhavebeenmissedifonlytheaveragediameterwasmeasured.Similarseparationsareobtainablefornanoparticles.25WideMolecularWeightandSizeRange.Samplesareroutinelyfilteredpriortochromatographicseparations,andthecolumnsthemselveshavebuilt-infritstoremovelargesamplecomponentsthatcanbedeleterioustocolumnperformance.BecauseFFFchannelsareopenstructureswithtypicalthick-nessesof∼100-500µm,oftentimestheentiresamplecanbeanalyzedwithoutfiltration.Figure2showsThFFFfractogramsforfilteredandunfilteredpoly(vinylacetate)(PVAc)samplesandD

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

Figure2.ThFFF-MALSanalysisofultrahighMWPVAc.(a)MALSfractogramandMWsand(b)dRIfractogramandrrmsofunfiltered(red)andfiltered(blue)PVAc.(I90:lightscatteringintensityat90°;Vr:retentionvolume).Reprintedfromref26withpermissionfromElsevier.

their(a)MWand(b)rootmeansquareradius,rrms,obtainedbyonlinemultianglelightscattering-differentialrefractiveindex(MALS-dRI)detection.26ThisdetectorcombinationconfirmsthesuccessofaseparationthatspansfiveordersofmagnitudeinMWandatrrmsvaluesupto400nm.ThelowshearratesencounteredinFFFchannelssignificantlyreducethepossibil-ityforsheardegradationofultrahighMWpolymers.ThedRIplotinFigure2brevealsthatfiltrationunexpectedlyremovesasignificantamountoflowerMWsolublepolymers,whichleadstoerroneousresults.Thisstudydemonstratedthattheroutinesamplefiltrationusedasastandardstepinmanymacromolecularanalysesmustbeperformedjudiciously.SizeSeparation.Sizeandsizedistributionsplayimportantrolesinopticalandelectricalproperties,fateandtransport,andbiologicalefficacy.FFFhasbeenusedtocharacterizeawidevarietyofnanoscalematerials,includingengineerednanoparticles(quantumdots,25,27,28fullerenes,29andcarbonnanotubes30);environmentalcolloids;31-33naturalandsyntheticmacromole-cules;26,34-37proteins,proteinaggregates,andproteinvirus-likeparticles;38-44drugandgenetherapydeliveryvehicles;45-47andsubcellularparticles.24Nanoparticleshapehasdramaticeffectsonopticalproperties.Forexample,goldnanorods(GNRs)havebeenproposedforapplicationssuchasbioimagingandbiosensingbecausedifferentaspectratiosoftherodswillhavecharacteristicabsorbancewavelengthsthatcanbediscernedinamultiplexedanalysis.TheuseofFFFtoachievewhatiseffectivelyashape-basedseparationofapolydisperseGNRsampleisshowninFigure3.FractionsF1-F4werecollectedattheindicatedtimeintervalsinFigure3aandcontainedGNRsubpopulationsofincreasinglengthasevidencedbytransmissionelectronmicroscopy(TEM)imagesFigure3.(a)AsFlFFFfractogramofGNRs.Thecross-hatchedregionsdesignateretentiontimesoffourdifferentcollectedfractions.(b)TEMimagesandassociatedsolutioncolorsofcollectedfractions.

inFigure3b.AsuspensionofeachfractionisshownbelowitscorrespondingTEMimage;thedifferentcolorsfurtherconfirmthepresenceofdifferentGNRsubpopulations.48ThisGNRseparationisbasedonthesphereequivalenthydrodynamicdiameterasdescribedbyEquation4.Thoughthisisnotatrueshapeseparation,thisexampledemonstratesthepossibilityofobtainingfractionscontainingdifferentaspectrationanoparticles.FlFFF-MALShasalsobeensuccessfullyusedtoseparateandcharacterizeDNAstabilizedsinglewallednanotubesinanaqueouscarrierliquidaccordingtolength.30Mass.Functionalizednanoparticlesareusedinmanyapplica-tionsrangingfromimmunodiagnosticstoreinforcedplastics.Theabilitytoquantitatetheamountof(physicallyorchemically)attachedfunctionalitiescanprovideinsightsintothebehaviorandperformanceofthesenanoparticles.SdFFFiswellsuitedforthistaskbecausetrisproportionaltom′oftheparticle(Equation3).Hence,theadsorptionorattachmentofproteins,polymers,orotherfunctionalitiestothesurfaceofnanoparticlesisreflectedbyanincreaseintr.SdFFFhasbeenusedasamicrobalanceformeasuringminute(10-16-10-18g)changesinm′andmonitoringdifferentstagesinthedevelopmentofananopar-ticle-basedbioluminescentimmunosensor.17Thisbiosensor,whichhasadetectionlimitof15fmol,consistedofpolystyrene(PS)latexparticlesthatwerefirstcoatedwithasurfactantandthenwithbovineserumalbumin(BSA).SdFFFmeasurementsyieldedasaturationlevelloadingof700nmolpyruvatekinase-IgY(antiBSA)conjugateper7.5×1010BSAcoatedparticlesandanaverageof22BSAmoleculesperpyruvatekinase-IgYconjugate.

Composition.Elasticity,adhesiveness,haziness,andphaseseparationbehaviorareexamplesofpolymerpropertiesthatFigure4.Composition-basedThFFFseparations.(a)PSandPBApolymerswithsimilarhydrodynamicradii.(b)Core-shellnanoparticleswithdifferentPBA:PMAAshellcompositions.Latex1:135nmPScore;Latex2:9%PMAAshell;Latex3:15%PMAAshell;Latex4:36%PMAAshell.Partbreprintedfromref10withpermissionfromElsevier.

dependoncomposition.ThFFFcanseparateorganosolublemacromoleculesbycomposition,despiteanincompleteunder-standingofthermaldiffusion.Figure4ashowsabaselineresolvedcompositionseparationofPSandpoly(n-butylacrylate)(PBA)polymerswithsimilarhydrodynamicradii,rh,(12.75nm)andD(4.0×10-7cm2sec-1).ThFFFhasalsobeenusedtoseparatenanoparticleswithdifferentsurfacecompositions.Figure4bshowsthesuperimposedfractogramsoffourcore-shelllatexparticlesconsistingofa135nmPScoreandshellswithvaryingratiosofPBAandpoly(methacrylicacid)(PMAA).10ThenanoparticlewiththelargestshellratioofPBA/PMAAhadtheshortestretentiontime,whereasthePScore(smallestparticle)wasretainedlongest,suggestingasurfacecompositiondependentretention.DTisauniquepropertyofthepolymer-solventpairandvarieslinearlywithcopolymercomposition.Therefore,ThFFFcandeterminethecopolymercompositionofanunknownsamplefrommeasuredtrandD.49Thesamehasbeendemonstratedforthecore-shellnanoparticlesmentionedabove.10BandGap.Carbonnanotubeshavebeenproposedforap-plicationssuchashighstrengthandconductivecomposites,sensors,fieldemissiondisplays,andhydrogenstoragemedia.Theirsemiconductiveandopticalpropertiesdependontheirchiralityandphysicaldimensions.30Dielectrophoreticforceshavebeenusedtoseparatesinglewallnanotubes(SWNTs)accordingtoelectronictypeandtoproducefractionsthatareenrichedindifferentSWNTdiameters.23DifferencesindielectricconstantsformthebasisfortheseDEP-FFFseparations.Becausethedielectricconstantisgovernedbythebandgapwhich,inturn,isinverselyproportionaltodiameter,separationsbasedonbandgapsanddiameterarepossible.TheformerwasachievedbyutilizingAnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

E

Figure5.AsFlFFFfractionationandcharacterizationofprotease-resistantprionproteinparticles(PrPres)withonlineMALS,dRI,andQELS.(a)Specificinfectivityofeachfractionoverlaidwiththecorrespondingmolarmass(i.e.,molecularweight,MW),rrms(i.e.,radiusofgyration),andhydrodynamicradius(rh).(b)TEMimagesoffourfractionsshowinganincreaseinsizeandfibrillengthcorrespondingtoincreasingfractionnumbers(scalebars)100nm).Reprintedfromref40withpermissionfromNaturePublishingGroup.

electricfieldconditionsthatpreferentiallytrappedmetallicspeciesontheelectrodewhilethesemiconductorspeciesflowedthroughtheDEP-FFFchannel.Inthelattercase,theenrichmentofsemiconductorSWNTsofdifferentdiameterswasachievedbytheusualFFFseparationmechanism.Thatis,differencesindielectrophoreticforcescausedSWNTstoresideindifferentflowvelocitystreamlinesintheDEP-FFFchannelandeluteatdifferenttimes.FluorescenceandRamanspectrawerecollectedassup-portingevidenceofseparationandenrichment.MagneticSusceptibility.Thelargesurfaceareaofmagneticnanoparticlesmakethemattractivecandidatesforapplicationssuchasdrugtargeting,catalysis,andbioseparation.6Thesynthesisofmonodispersemagneticnanoparticlesisdifficulttoachieve,yetrequiredformedicalapplications.Forinstance,tominimizetheunwantedsystemiceffectsofpharmaceuticalmagneticnanopar-ticlesandallowtheuseofhigherandeffectivedrugdoses,theweaklymagneticfractionmustbedepletedfromthepolydisperseformulation.Therewasnomethodtomeasurethepolydispersityinthemagneticpropertiesofthesepharmaceuticalnanocarriersuntilrecently,whenQMgFFFsuccessfullydifferentiatedthreedifferentlotsofmagneticnanoparticles6andfractionatedpolydis-persesamplesofdextran-coatedmagnetitenanoparticlesaccord-ingtotheirmagneticsusceptibility.COMPLEXSAMPLESANDPROCESSES

Highselectivity,widesizerange,andlowshearratesmakeFFFideallysuitedfortheseparationofcomplexandoftenfragilesamples.Biologicalandenvironmentalsamplestendtobehighlycomplexwithmultiplecomponentscomposedofwidearraysofphysicochemicalpropertiesthatcanundergodynamicchanges.(TheribosomedatashowninFigure1isagoodexampleofacomplexsamplewhosecomponentscanshiftwithgrowthcondi-tionsandtime.)Thus,itisnotsurprisingthatFFF(particularly,FlFFF)hasfoundanicheintheseareas.38-47ProteinAggregation.Misfoldedandpartiallyunfoldedpro-teinscanleadtotheformationofaggregatesanddepositssuchasthefibrilsandplaquesassociatedwithneurodegenerativediseases.Proteinaggregatescausedbychemical-orphysical-inducedinstabilitiesduringmanufacturing,storage,and/orad-ministrationcanalsobepresentinbiotherapeuticproducts.Thelinkbetweenproteinaggregatesandimmunogenicity,thedifficultyofestablishingcause-and-effect,andtheneedforanappropriatesuiteofinstrumentationforanalyzinge10µmaggregatesarecurrentlytopicsofdiscussioninthisfield.50-52KeychallengestoF

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

thecharacterizationofproteinaggregatesinproteintherapeuticsincludequantitationandidentificationofaggregateswithawidesizerangeof0.1-10µm.AnoptimizedAsFlFFF-MALS-UVmethodwasdevelopedthatcoveredthe50-500nmsizerange.39Proteinself-associationattributedtotheAsFlFFFsamplefocusingstepwasavoidedbyusingmoderateflowrates.Quantifyingminorspecies,e.g.,highorderaggregates,remainsanunresolvedproblembutcouldbeaddressedwithmoresensitivedetectors.Astudyofatherapeuticimmunoglobulinfurtherillustratesthecomplexityofaggregate-containingsamples.38AhostofanalyticalmethodsincludingAsFlFFFandfluorescencemicroscopyshowedthatdifferenttypesofaggregatescanformthroughnoncovalentbonds(e.g.,hydrogenbonding,electrostaticrepulsionandattrac-tion,andhydrophobicinteractions).TheflexibilityinthechoiceofFFFcarrierliquidwasanadvantagebecauseaminoacid-orformulation-basedbufferscouldbeused.Pathologically,proteinaggregationisassociatedwithdiseasessuchasAlzheimer’s,Parkinson’s,andtransmissiblespongiformencephalopathies.Inagroundbreakingstudy,AsFlFFFwithMALS-dRI-quasielasticlightscattering(QELS)detectionwasessentialindemonstratingthataggregatesoftheprotease-resistantprionprotein(PrPres)withMWof300-600kDa,hydrodynamicradiusrhof14-28nm,andthatarecomposedof14-28PrPresmoleculespossessedthegreatestinfectivity(Figure5a).40TEManalysisoffourfractionscollectedacrossthefractogramshowedanincreaseinbothsizeandfibrilformationconcurrentwithincreasingAsFlFFFelutiontimes(Figure5b).ThechangeintherhtorrmsratioasdetectedbyMALSandQELScorroboratedthepresenceoffibrilsinthelonger-retainedfractions.Theseresultssupportanemergingviewthatwithproteinaggregationdiseases,smallersubfibrillarparticlesmaybemuchmorepathologicalthanlargeramyloidfibrilsorplaques,whichhasimplicationsonthedevelopmentoftherapiestotreatthesediseases.40DrugandGeneDelivery.Sizeandsizedistributionsareamongtheimportantparametersthatgoverndrugandgenedeliveryefficiencies.AsFlFFFcoupledwithlightscatteringdetec-torsisacharacterizationmethodforliposomepreparations53andbiodegradableN,O-dimethacryloylhydroxylamine(DMHA)cross-linkedpoly(N-isopropylmethacrylamide)(PNiPAM)thermosen-sitivenanogelsthatarebeingdevelopedforuseasdrugdeliveryvehicles.45DMHAdecomposesunderphysiologicconditionsandhaslowinvivotoxicity.Thesize,molarmass,topology,particlenumberdensity,andbyproductsfromtemperatureandpHdependenterosionstudiesweremonitored.Atphysiologicalconditions,thenanogel’sweightaveragemolecularweightde-creasedfrom6×107to2×107gmol-1withoutasignificantincreaseinsize.Acomparisonofrhtorrmsrevealedthatthenanogeltopologyremainedconstantdespiteextensiveerosion,whichwasattributedtotheself-cross-linkingbehaviorofthePNiPAM.Theseobservationssubstantiatedanefficientdesignofananogelscaffoldingfordrugrelease.

FlFFF-MALShasmonitoredthesizeandstabilityofcationicsurfactant-basednon-viralvectorsforgenetherapy.46TheadditionofUV-visandQELSdetectorstoAsFlFFF-MALSenabledthesimultaneousmeasurementofcompositionandamountoffreepolycationanddetectionofaggregatesinthefinalformulationofchitosan-basedvectors,whichsubsequentlyallowedcorrelationwithcelltransfectionrates.47Thedevelopmentofagenedeliveryvehiclebasedonvirus-likeparticlesderivedfromthehumanpolyomaJC-virusagainreinforcedthenecessityofusingasuiteofdetectorstoobtainmultiplelevelsofinformation.41Theseanalysesprovidedinsightsintoproceduresandformulationsessentialforoptimalstabilityandtransfectionratesandcouldnothavebeenachievedwithoutaseparationstage.NanoparticleToxicity.Thepotentialrisksofnanomaterialstohumanhealthandtheenvironmenthavedrawnagreatdealofattentioninthelastseveralyears.TheNationalNanotechnologyInitiativeheldworkshopsandsubsequentlypublisheddocumentsthatidentifypriorityareasforenvironmental,health,andsafetyresearchneedsforengineerednanoscalematerials.4Onekeygoalistheestablishmentofmethodsfornanoparticlequantificationandcharacterization.Thisisparticularlyimportantbecausethephysicochemicalpropertiesofnanomaterialsvarysubstantiallyfrombatch-to-batchandvendor-to-vendor,whichhasledtoinconsistentperformanceandbehaviorcharacteristics.FlFFFwithinductivelycoupledplasmaMS(ICPMS)wasusedtostudyshorttermexposuretoxicityof2and5nmCdSe/ZnSquantumdots(QD)withtwodifferentsurfacecoatings,11-mercaptoundecanoicacid(MUA)andpolyethyleneoxide(PEO).27ThemorestablePEO-QDwerelessacutelytoxictoDaphniamagnathantheMUA-QD,whichisdesignedforaccelerateddissolution.DissolvedCd2+waspresentintheMUA-QDsuspen-sion,andthustoxicitywasattributedtocadmiumpoisoning.ThePEO-QDsuspensioncontainednodissolvedCd2+,whichindicatedadifferenttoxicitymechanism.Theresultsofthisstudysuggestedthatasmallcoresizedoesnotnecessarilytranslatetogreatertoxicityandthattheuseofparticlenumberormassasadosemetriccanleadtodifferentconclusions.INSTRUMENTALADVANCES

DevelopmentsinFFFinstrumentationinthelastdecadehaveaddressednonidealbehaviororextendedFFFcapabilities.ThecouplingofFFFwithMALS-dRI,QELS,andMShasbeenbeneficialtoeachtechnique.ThetrainofmoremonodispersesampleselutingfromtheFFFchannelalleviatestheproblemofselectivedetectionandbiastowardscomponentsthatproducethestrongestresponses.54Ontheotherhand,thesedetectorscompensatefornonidealbehavior,e.g.,analyte-accumulationwallinteractionsthataffectFFFretentiontimes.OrthogonaltechniquessuchasICPMS,LC,andESIMSprovideawealthofinformationandhaveopenedgatewaystonanoparticletoxicityandproteomicstudies.27,44SomeadvancesinFFFinstrumentationandap-proachesarediscussedbelow.OnlineConcentration.Dilutionisacommonproblemforelution-basedseparationmethods.FFFseparationtakesplaceintheregionneartheaccumulationwall,sothemajorityoftheFFFchannelisoccupiedbyfluidonly.Removaloffluidfromtheregionfurthestfromtheaccumulationwallresultsinsampleconcentra-tion.ThishasbeenaccomplishedbyintroducingaslotoutletpositionedontheoppositechannelsurfacetotheaccumulationwallatthedetectorendoftheFFFchannel.55Carrierliquidiscontinuouslyremovedthroughtheslotoutletleadingtoon-linesampleconcentrationjustpriortodetection.A14×increaseinsampleconcentrationhasbeendemonstrated.55,56Anotherusefulapproachfortheanalysisofdilutesamplesistheopposedflowsampleconcentrationmethod.57AlargevolumeofsampleisintroducedintotheFlFFFchannel,whereitencoun-tersanopposingflow.TheratiooftheopposingflowratetosampleintroductionflowratedeterminesthepointalongtheFFFchannelwheresampleisfocusedpriortothestartoftheseparation.Becauseonlyparticle-freefluidcanexitthroughthesemipermeablemem-braneaccumulationwall,thesampleisconcentratedonthemem-brane.Samplevolumesaslargeas1Lhavebeenloadedintoa∼1.3mLvolumeFlFFFchannel,resultinginconcentrationfactorsashighas105.However,dependingontheflowratesused,sampleloadingcanbetimeconsuming.Thisapproachwasdemon-stratedinasymmetricFlFFFchannelbutcanalsobeimplementedinotherFlFFFconfigurations.

HighThroughputSeparation.Parallelseparationscanin-creasesamplethroughput.ThishasbeenachievedbyarrangingmultipleFlFFFchannelsincircularorparallelconfigurations.44,58,59Offlinecombinationof2Disoelectricfocusing(IEF)-AsFlFFF44andmultiplexedhollowfiber(MxHF5)-FlFFF59withnanoflowLCESIMS/MSallowedprofilingofurinaryproteinsandphospho-lipidsinlipoproteins.IEF-AsFlFFFcharacterizedhumanurinaryproteinsinlessthan30minutes.AnIEFseparationoftheproteinsbyisoelectricpointwasfollowedbysixmultiplexedsize-basedAsFlFFFfractionations,eachatauniquepH.Shotgunproteomicsfromeachsamplefractionidentified245totaland110novelproteins.TheMxHF5-FlFFFexperimentscombinedsixhollowfiberchannelsinparallelforthesemi-preparativesortingandcollectionoflipoproteins.Thehollowfiberchannelisdisposable,whichreducescross-contaminationrisksofclinicalsamples.Microchannels.MiniaturizedchannelshavebeenintroducedformanyFFFsystemssuchasThFFF,AsFlFFF,andelectricalFFF7,44,60Thereductioninchanneldimensionsoffersadvanta-geousfeaturessuchaslowsampleconsumptionandshorteranalysistimesatlowerenergyandresourcecosts.HighTemperatureandNonaqueousFlFFF.Ahightem-peratureFlFFFinstrumenthasbeenrecentlyintroducedfornonaqueousseparations.Newlydevelopedceramicmembranesstableat130°CandcompatiblewithchlorinatedorganicsolventsformtheheartofthestainlesssteelchannelthatwasusedtofractionatesemicrystallineultrahighMWpolyethylene(PE).35,36High-temperatureAsFlFFFcombinedwithonlineIR,MALS,andviscometrydetectionidentifiedandcharacterizedthelongchainbranchingcomponentoflowdensityPE.36Thisiscriticaltoimprovedunderstandingofeffectsoflongchainbranchingontherheologicalandprocessingpropertiesofpolyolefins.35,36TheporeAnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

G

sizeoftheceramicmembranedeterminedthelowerMWlimitof50kDa.ContinuedmembraneadvancementssuchassmallerporediametersandexpandedsolventcompatibilitywillopenmoredoorsforcharacterizingorganosolublemacromoleculesbyFlFFF.LOOKINGTOWARDSTHEFUTURE

FFFhascomeofageasamainstreamanalyticaltechniqueforseparatingandcharacterizinganalytespeciesthatrangeinsizefromthelownanometerstotensofmicrometers.TheNationalInstituteofStandardsandTechnologyhasusedFFFtosupportthedevelopmentofnewcertifiedreferencematerials.TheFoodandDrugAdministrationlistsFFFamongthecommontechniquesusedtocharacterizenanomaterials(ManualofPoliciesandProcedures5015.9).Asthenumberofapplicationsandpublicationsrise,methodsdevelopmentisgivingwaytomethodsrefinement,therebymakingtheimplementationofFFFalesstimeconsumingtaskforusersnewtothefield.ThenumberofpotentialFFFapplicationsseemsvastasnewnanomaterialsaredesignedandsynthesizedandnewmixturesandhybridsareintroduced.NewchallengeswillariseastheapplicationsofFFFinstrumentsmovebeyondtheinstru-ments’originaldesignpurpose.AnexampleistheFlFFFsepara-tionof<10nmquantumdotssuspendedinorganicsolvents,forwhichsuitablemembranesarenotcurrentlycommerciallyavail-able.Movingfromanalyticalscaletopreparativescaleapplicationsisalsoapracticalchallenge.Forexample,typicalFFFexperimentsampleinjectionvolumesaretensofmicroliterscontaining∼106-108nanoparticles.Thoughthisprovidesgoodmeasure-mentstatistics(relativetomicroscopy),thisremainsintherealmofanalyticalscale.Preparativescaleseparationsthatcouldproducesuitablequantitiesofuniformsamplesfortestingwouldgreatlyextendunderstandingofnano-sizedmaterialpropertiesandtheirrelationtoproductperformance.ThetimeisalsoripeforminiaturizationbecausecombinedmicrofluidicsandFFFknowledgecouldproducedeviceswithimproveddiagnosticoronlineprocessingcapabilities.GrowinganalyticalneedsthatcanbeaddressedbynewapplicationsofFFF-basedinstrumentationwithdifferentfieldsandcapabilitieswillcontinuetodrivedevelopmentinthisfield.

ACKNOWLEDGMENT

TheauthorsgratefullyacknowledgesupportfromtheNationalScienceFoundation(CHE-0515521,CHE-1013029,CBET-0968042,andDMR-0820518).A.AshamesissupportedbytheLibyanMinistryofEducationandScientificResearch.S.KimR.WilliamsisanAssociateProfessorofChemistryandtheDirectoroftheLaboratoryforAdvancedSeparationsTechnologiesatColoradoSchoolofMines.ResearchintheWilliamslabfocusesonthedevelopmentandapplicationofseparationandcharacterizationtechnologiesforanalytesthatspannanometertomicrometersizes.Dr.J.RayRunyonisapostdoctoralresearcherattheColoradoSchoolofMines.HisresearchfocusesonthedevelopmentofnovelFFFandlightscatteringapproachestocharacterizecomplexpolymersandnanoparticlessystemsandascertainstructure-property-performancerelationships.HereceivedhisPh.D.in2009undertheguidanceofProf.Williams.AkramAshamesisaPh.D.graduatestudentintheWilliamsresearchgroup.WithaB.Sc.inpharmacyfromAlfatehUniversity,Libya,hisresearchfocusesondevelop-ingandimplementingFFFwithdifferentdetectionsystemsforthepreparationandstudyofnanocarriersfordrugdelivery.Addresscor-respondencetoWilliamsatLaboratoryforAdvancedSeparationsTech-nologies,DepartmentofChemistryandGeochemistry,ColoradoSchoolofMines,Golden,CO80401;krwillia@mines.edu;Fax:1-303-273-3629.H

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXX

REFERENCES

(1)Giddings,J.C.Sep.Sci.1966,1,123–125.(2)Giddings,J.C.Science1993,260,1456–1465.

(3)Schimpf,M.E.;Caldwell,K.D.;Giddings,J.C.Field-FlowFractionation

Handbook;Wiley:NewYork,2000.

(4)NationalNanotechnologyInitiative.http://www.nano.gov/NNI_EHS_Re-search_Strategy.pdf2008.

(5)Gascoyne,P.R.C.Anal.Chem.2009,81,8878–8885.

(6)Williams,P.S.;Carpino,F.;Zborowski,M.Mol.Pharmaceutics2009,6,

1290–1306.

(7)Gale,B.K.;Caldwell,K.D.;Frazier,A.B.Anal.Chem.2001,73,2345–

2352.

(8)Semyonov,S.N.;Maslow,K.I.J.Chromatogr.A1988,446,151–156.(9)Myers,M.N.;Caldwell,K.D.;Giddings,J.C.Sep.Sci.1974,9,47–70.(10)Ratanathanawongs,S.K.;Shiundu,P.M.;Giddings,J.C.ColloidsSurf.A

1995,105,243–250.

(11)Pasti,L.;Agnolet,S.;Dondi,F.Anal.Chem.2007,79,5284–5296.

(12)Messaud,F.A.;Sanderson,R.D.;Runyon,J.R.;Otte,T.;Pasch,H.;Williams,

S.K.R.Prog.Polym.Sci.2009,34,351–368.

(13)Mes,E.P.C.;Kok,W.Th.;Tijssen,R.Int.J.Polym.Anal.Charact.2003,

8,133–153.

(14)Giddings,J.C.;Yang,F.J.F.;Myers,M.N.Anal.Chem.1974,46,1917–

1924.

(15)Barman,B.N.;Giddings,J.C.Langmuir1992,8,51–58.

(16)Beckett,R.;Ho,J.;Jiang,Y.;Giddings,J.C.Langmuir1991,7,2040–

2047.

(17)Fromell,K.;Hulting,G.;Ilichev,A.;Larsson,A.;Caldwell,K.D.Anal.Chem.

2007,79,8601–8607.

(18)Giddings,J.C.;Yang,F.J.;Myers,M.N.Anal.Chem.1976,48,1126–

1132.

(19)Davis,J.M.Anal.Chim.Acta1991,246,161–169.

(20)Wahlund,K.G.;Giddings,J.C.Anal.Chem.1987,59,1332–1339.

(21)Zattoni,A.;Rambaldi,D.C.;Roda,B.;Parisi,D.;Roda,A.;Moon,M.H.;

Reschiglian,P.J.Chromatogr.A2008,1183,135–142.

(22)Gascoyne,P.R.C.;Noshari,J.;Anderson,T.J.;Becker,F.F.Electrophoresis

2009,30,1388–1398.

(23)Peng,H.;Alvarez,N.T.;Kittrell,C.;Hauge,R.H.;Schmidt,H.K.J.Am.

Chem.Soc.2006,128,8396–8397.

(24)Arfvidsson,C.;Wahlund,K.G.Anal.Biochem.2003,313,76–85.

(25)Rameshwar,T.;Samal,S.;Lee,S.;Kim,S.;Cho,J.;Kim,I.S.J.Nanosci.

Nanotechnol.2006,6,2461–2467.

(26)Lee,D.;Williams,S.K.R.J.Chromatogr.A2010,1217,1667–1673.(27)Pace,H.E.;Lesher,E.K.;Ranville,J.F.Environ.Toxicol.Chem.2010,

29,1338–1344.

(28)Zattoni,A.;Rambaldi,D.C.;Reschiglian,P.;Melucci,M.;Krol,S.;Garcia,

A.M.C.;Sanz-Medel,A.;Roessner,D.;Johann,C.J.Chromatogr.A2009,1216,9106–9112.

(29)Kato,H.;Nakamura,A.;Takahashi,K.;Kinugasa,S.Phys.Chem.Chem.

Phys.2009,11,4946–4948.

(30)Chun,J.;Fagan,J.A.;Hobbie,E.K.;Bauer,B.J.Anal.Chem.2008,80,

2514–2523.

(31)Jackson,B.P.;Ranville,J.F.;Bertsch,P.M.;Sowder,A.G.Environ.Sci.

Technol.2005,39,2478–2485.

(32)Krachler,R.;Krachler,R.F.;vonderKammer,F.;Su¨phandag,A.;Jirsa,F.;

Ayromlou,S.;Hofmann,T.;Keppler,B.K.Sci.TotalEnviron.2010,408,2402–2408.

(33)Baalousha,M.;Lead,J.R.Environ.Sci.Technol.2007,41,1111–1117.(34)Rolland-Sabate´,A.;Colonna,P.;Mendez-Montealvo,M.G.;Planchot,V.

Biomacromolecules2007,8,2520–2532.(35)Otte,T.;Bru¨ll,R.;Macko,T.;Pasch,H.;Klein,T.J.Chromatogr.A2010,

1217,722–730.

(36)Mes,E.P.C.;deJonge,H.;Klein,T.;Welz,R.R.;Gillespie,D.T.

J.Chromatogr.A2007,1154,319–330.

(37)Yohannes,G.;Shan,J.;Jussila,M.;Nuopponen,M.;Tenhu,H.;Riekkola,

M.L.J.Sep.Sci.2005,28,435–442.

(38)Demeule,B.;Lawrence,M.J.;Drake,A.F.;Gurny,R.;Arvinte,T.Biochim.

Biophys.Acta2007,1774,146–153.

(39)Cao,S.;Pollastrini,J.;Jiang,Y.Curr.Pharm.Biotechnol.2009,10,382–

390.

(40)Silveira,J.R.;Raymond,G.J.;Hughson,A.G.;Race,R.E.;Sim,V.L.;Hayes,

S.F.;Caughey,B.Nature2005,437,257–261.

(41)Citkowicz,A.;Petry,H.;Harkins,R.N.;Ast,O.;Cashion,L.;Goldmann,

C.;Bringmann,P.;Plummer,K.;Larsen,B.R.Anal.Biochem.2008,376,163–172.

(42)Lipin,D.I.;Lua,L.H.L.;Middelberg,A.P.J.J.Chromatogr.A2008,

1190,204–214.

(43)Chuan,Y.P.;Fan,Y.Y.;Lua,L.;Middelberg,A.P.J.Biotechnol.Bioeng.

2008,99,1425–1433.

(44)Kim,K.H.;Moon,M.H.J.ProteomeRes.2009,8,4272–4278.

(45)Smith,M.H.;South,A.B.;Gaulding,J.C.;Lyon,L.A.Anal.Chem.2009,

82,523–530.

(46)Lee,H.;Williams,S.K.R.;Allison,S.D.;Anchordoquy,T.J.Anal.Chem.

2001,73,837–843.

(47)Ma,P.L.;Buschmann,M.D.;Winnik,F.M.Biomacromolecules2010,

11,549–554.

(48)Runyon,J.R.;Goering,A.;Williams,S.K.R.;Yong,K.Pittsburgh

ConferenceonAnalyticalChemistryandAppliedSpectroscopy,Chicago,2009,Abstract590-14.

(49)Schimpf,M.E.;Wheeler,L.M.;Romeo,P.F.InACSSymposiumSeries

521,Provder,T.,Ed.;ACSPublications:Washington,DC,1993;pp63-76.(50)Rosenberg,A.S.AAPSJ.2006,8,E501-E507.

(51)Carpenter,J.F.;Randolph,T.W.;Jiskoot,W.;Crommelin,D.J.A.;

Middaugh,C.R.;Winter,G.;Fan,Y.X.;Kirshner,S.;Verthelyi,D.;Kozlowski,S.;Clouse,K.A.;Swann,P.G.;Rosenberg,A.;Cherney,B.J.Pharm.Sci.2009,98,1201–1205.

(52)Singh,S.K.;Afonina,N.;Awwad,M.;Bechtold-Peters,K.;Blue,J.T.;Chou,

D.;Cromwell,M.;Krause,H.-J.;Mahler,H.-C.;Meyer,B.K.;Narhi,L.;Nesta,D.P.;Spitznagel,T.J.Pharm.Sci.2010,99,3302–3321.

(53)Hupfeld,S.;Moen,H.H.;Ausbacher,D.;Haas,H.;Brandl,M.Chem.Phys.

Lipids2010,163,141–147.

(54)Kassalainen,G.E.;Williams,S.K.R.Anal.Chem.2003,75,1887–14.(55)Prestel,H.;Niessner,R.;Panne,U.Anal.Chem.2006,78,66–6669.(56)Leeman,M.;Islam,M.T.;Haseltine,W.G.J.Chromatogr.A2007,1172,

194–203.

(57)Lee,H.;Williams,S.K.R.;Giddings,J.C.Anal.Chem.1998,70,2495–

2503.

(58)Maskos,M.;Schupp,W.Anal.Chem.2003,75,6105–6108.

(59)Lee,J.Y.;Min,H.K.;Choi,D.;Moon,M.H.J.Chromatogr.A2010,1217,

1660–1666.

(60)Janca,J.Microthermalfield-flowfractionation:analysisofsynthetic,natural,

andbiologicalmacromoleculesandparticles;HBNPublishing:NewYork,2008.

AC101759Z

AnalyticalChemistry,Vol.xxx,No.xx,MonthXX,XXXXI

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务