NONPARAMETRICGAUSSIANPROCESSPRIORMODELS
RoderickMurray-SmithDanielSbarbaro
DepartmentofComputingScience,UniversityofGlasgow,GlasgowG128QQ,Scotland,UK.&HamiltonInstitute,NUIMaynooth,Ireland
E-mail:rod@dcs.gla.ac.uk
´El´DepartamentodeIngenieriaectrica,UniversidaddeConcepci´on,
Chile.E-mail:dsbarbar@die.udec.cl
Abstract:NonparametricGaussianProcesspriormodels,takenfromBayesianstatisticsmethodologyareusedtoimplementanonlinearadaptivecontrollaw.Theexpectedvalueofaquadraticcostfunctionisminimised,withoutignoringthevarianceofthemodelpredictions.Thisleadstoimplicitregularisationofthecontrolsignal(caution),andexcitationofthesystem.Thecontrollerhasdualfeatures,sinceitisbothtrackingareferencesignalandlearningamodelofthesystemfromobservedresponses.Thegeneralmethodanditsmainfeaturesareillustratedonasimulationexample.Copyrightc2002IFAC.
Keywords:Gaussianprocesspriors,nonparametricmodels,dualcontrol,nonlinearmodel-basedpredictivecontrol.
1.INTRODUCTION
Manyauthorshaveproposedtheuseofnon-linearmodelsasabasetobuildnonlinearadaptivecon-trollers.Inmanyapplications,however,thesenon-linearitiesarenotknown,andnon-linearparameter-isionmustbeusedinstead.Apopularchoicehasbeentheuseofartificialneuralnetworksforesti-matingthenonlinearitiesofthesystem(NarendraandParthasarathy,1990;LiangandElMargahy,1994;ChenandKhalil,1995;BittantiandPiroddi,1997).Alltheseworkshaveadoptedforcontrollerdesign,thecertaintyequivalenceprinciple,wherethemodelisusedinthecontrollaw,asifitwerethetruesys-tem.Inordertoimprovetheperformanceofnonlinearadaptivecontrollersbasedonanonlinearmodels,theaccuracyofthemodelpredictionsshouldalsobetakenintoaccount.
Mostengineeringapplicationsarestillbasedonpara-metricmodels,wherethefunctionalformisfullyde-scribedbyafinitenumberofparameters,oftenalinearfunction.Eveninthecaseswhereflexibleparamet-ricmodelsareused,suchasneuralnetworks,spline-
basedmodels,multiplemodelsetc,theuncertaintyisusuallyexpressedasuncertaintyofparameters(eventhoughtheparametersoftenhavenophysicalinterpre-tation),anddonottakeintoaccountuncertaintyaboutmodelstructure,ordistanceofcurrentpredictionpointfromtrainingdatausedtoestimateparameters.ThispaperdescribesanapproachbasedonGaussianpro-cesspriors,asanexampleofanon-parametricmodelwithusefulanalyticproperties.Theseallowustoan-alyticallyobtainacontrollawwhichperfectlymin-imisestheexpectedvalueofaquadraticcostfunc-tion,whichdoesnotdisregardthevarianceofthemodelpredictionasanelementtobeminimised.Thisleadsnaturally,andautomaticallytoasuitablecom-binationofregularisingcautionincontrolbehaviourinfollowingthereferencetrajectory,andexcitationofcontroleffort,dependingonmodelaccuracy.Theaboveideasarecloselyrelatedtotheworkdoneondualadaptivecontrol,wherethemainefforthasbeenconcentratedontheanalysisanddesignofadaptivecontrollersbasedontheuseoftheuncertaintyasso-ciatedtoparametersofmodelswithfixedstructure(Wittenmark,1995;FilatovandUnbehauen,2000).
2.NON-PARAMETRICMODELSAND
UNCERTAINTYPREDICTIONParametricmodelscommonlyusedincontrolcontextsassumethatthesystem’sfunctionalformcanbede-scribedbyafinitesetofparameters.Non-parametricmodels(called‘smoothing’insomeframeworks)donotconstrainthemodeltoapre-specifiedfunctionalform,anddonotprojecttheobserveddatadowntoafiniteparameterisation.Theweakerpriorassumptionsandflexibleformtypicallyappliedinanon-parametricmodelmaketheapproachwell-suitedforinitialdataanalysisandexploration.
Asignificantadvantagewhenmodellingnonlineardy-namicsystemsisthatnonparametricapproachesretaintheavailabledataandperforminferenceconditionalonthecurrentstateandlocaldata.Thisisadvanta-geousinoff-equilibriumregions,sincenormallyintheseregionstheamountofdataavailableforiden-tificationismuchsmallerthanthatavailableclosetoequilibriumconditions.Theuncertaintyofmodelpredictionscanbemadedependentonlocaldataden-sity,andthelocalmodelcomplexityautomaticallyrelatedtotheamountofavailabledata(morecomplexmodelsneedmoreevidencetomakethemlikely).Bothaspectsareveryusefulwhenmodellingsparsely-populatedtransientregimesindynamicsystems,andwillhavesignificanteffectsoncontrolbehaviour.
3.GAUSSIANPROCESSPRIORS
Anexampleoftheuseofaflexiblenon-parametricmodelwithuncertaintypredictionsisaGaussianPro-cessprior,introducedin(O’Hagan,1978)andre-centlyreviewedin(Williams,1998).UseofGPsinacontrolsystemscontextisdiscussedin(Murray-Smithetal.,1999;Leithetal.,2000).AvariationwhichcanincludeARMAnoisemodelsisdescribedin(Murray-SmithandGirard,2001).
Inthefollowing,thefullmatrixofstateandcontrolinputvectorsisdenotedby,andthevectorofoutputpointsis.Thediscretedataoftheregressionmodelareand.Intheexampleusedinthispaper,,and
.Thegivendata
pairsusedforidentificationarestackedinmatrices
andthedatapairsusedforpredictionare.Insteadofparameterisingasaparametricmodel,wecanplaceapriordirectlyonthespaceoffunctionswhereisassumedtobelong.AGaussianprocessrepresentsthesimplestformofprioroverfunctions–weassumethatanypointshavea-dimensionalmultivariateNormaldistribution.Wewillassumezeromean,soforthecasewithpartitioneddataandwewillhavethemultivariateNormaldistribution(wewillassumezeromean),
(1)
whereisthefullcovariancematrixforthetraininginputs,andwhereforthecross-covariancebetweenand.LiketheGaussiandistribution,theGaussianProcessisfullyspecifiedbyameananditscovariancefunction.Thecovariancefunctionexpressestheexpectedcovariancebetweenand–wecanthereforeinfer’sfromconstantgiven’sratherthanbuildingexplicitparametricmodels.
Asinthemultinormalcase,wecandividethejointprobabilityintoamarginalGaussianprocessandaconditionalGaussianprocess.Themarginaltermgivesusthelikelihoodofthetrainingdata,
where,asinthestraightforwardmultinormalcasedescribedearlier,
(3)
(4)
sowecanuse
astheexpectedmodel
output,withavarianceof
.
3.1Thecovariancefunction
Themultivariatenormalassumptionmayseemre-strictive,butwecanactuallymodelawiderangeoffunctions,dependingonthechoiceofcovariancefunc-tion.Themodel’sprioroverpossiblefunctionscanbeadaptedtoagivenapplicationbyalteringthestructureorparametersofthecovariancefunction.Thechoiceoffunctionisonlyconstrainedinthatitmustalwaysgenerateanon-negativedefinitecovariancematrixforanyinputs,sowecanrepresentaspectrumofsys-temsfromverynonlinearmodels,tostandardlinearmodelsusingthesameframework.Thecovariancefunctionwillalsooftenbeviewedasbeingthecombi-nationofacovariancefunctionduetotheunderlyingmodelandoneduetomeasurementnoise.Theentriesofthismatrixarethen:
(5)
wherecouldbe,whichwouldbe
addinganoisemodel
tothediagonalentriesof.
Wediscusscovariancefunctionsforcorrelatednoisemodelsin(Murray-SmithandGirard,2001).Inthispaper,weuseastraightforwardcovariancefunction,
sothattheparametervector.
isadistancemeasure,whichshouldbeoneatandwhichshouldbeamonotonicallydecreasingfunctionof.Theoneusedherewas
Withmostmodels,estimationofVar
Var
(10)
,or
VarVar
4.1Example:linearinparametersGP
Asanintroductoryexample,ifwehaveaGPtorepresentalinearmodel,foratargetsystemoftheform
where,and,whereinthiscaseweusethesimplelinearbasis
,andisadiagonalmatrixwith
thevectoraselements
Var
(11)
where,
fornotationalconvenience.
(SISO).
Var
At
where
derivative:
and
.Takingthepartial
.At
asinabovebutweusedifferentvaluesofthehyperparameterstothoseusedin.
5.SIMULATIONRESULTS
Toillustratethefeasibilityoftheapproachweusedittocontrolasimplesystembasedonnoisyobservedre-sponses.Westartoffwithonlytwotrainingpoints,andaddsubsequentdatatothemodelduringoperation.Themodelhashadnoprioradaptationtothesystembeforetheexperiment,andthecovariancefunctionschosenareverygeneral.Modelhyperparametersareadaptedaftereachiterationusingaconjugatedescentalgorithm.ThepriorityhereistoshowthattheGPmodelsarecapableofadaptivenonlinearcontrol,evenwhennopriorshavebeenplacedontheirhyperpa-rameters.AmorecompleteBayesianapproachwouldbetousethefullpriorstructureinO’Hagan(1978),whichwouldalsoleadtoincreasedrobustnessandhigherperformanceintheearlystagesofadaptation.Letthenon-linearsystembe:
where
,
and,subjecttonoisewithvariance
(FabriandKadirkamanathan,1998).
NotehowinFigure2islargeintheearlystagesoflearning,butdecreasingwiththedecreaseinvariance,showinghowtheregularisingeffectenforcescautioninthefaceofmodeluncertainty,butreducescautionasthemodelaccuracyincreases.isalsolargerintheearlystagesoflearning,essentiallyaddinganexcita-torycomponent.Weexpectwillplayamoresig-nificantrolewhenthecovarianceofthecontrolsignaldependsonthestate.Figure3showsthedevelopmentinthemeanmappingfromtoasthesystemacquiresdata.
6.CONCLUSIONS
Thisworkhaspresentedanoveladaptivecontrollerbasedonnon-parametricmodels.Thecontroldesignisbasedontheexpectedvalueofaquadraticcostfunction,leadingtoacontrollerthatnotonlywillminimisethesquareddifferencebetweenthereferencesignalandtheexpectedvalueoftheoutput,butwillalsotrytominimisethevarianceoftheoutput.Thisleadstoarobustcontrolactionduringadaptation.Simulationresults,consideringlinearandnon-linearsystems,demonstratetheinterestingcharacteristicsofthistypeofadaptivecontrolalgorithm.
GP’shavebeensuccessfullyadoptedfromtheirstatis-ticsoriginsbytheneuralnetworkcommunity(Williams,1998).ThispaperisintendedtobringtheGPapproachtotheattentionofthecontrolcommunity,andtoshowthatthebasicapproachisacompetitiveapproachfor
Nonlinear GP model, Nonlinear IIR system5Y Yd 4µ µ+2σµ−2σ3u 210−1−2−3−4020406080100120140160180200(a)SimulationofnonlinearGP-basedcontrollerα0.50−0.5−1−1.5020406080100120140160180200β10110010−110−210−3020406080100120140160180200(b)and(regularisationterm)Fig.2.Simulationresultsshowingmodellingaccu-racy,controlsignals,trackingbehaviourandlev-elsofandateachstage.
modellingandcontrolofnonlineardynamicsystems,evenwhenlittleattempthasbeenmadetoanalysethedesigner’spriorknowledgeofthesystem–thereismuchmorethatcanbetakenfromtheBayesianapproachtouseinthedualcontrolandnonlinearcontrolareas,e.g.useoftheframeworksuggestedin(O’Hagan,1978)foroptimalexperimentdesignwithGaussianprocesspriorscouldimproveexploration.TheGaussianProcessapproachtoregressionissimpleandelegant,andcanmodelnonlinearproblemsinaprobabilisticframework.Thedisadvantageisitscom-putationalcomplexity,asestimatingthemean
requiresamatrixinversionoftheco-variancematrix,whichbecomesproblematicforiden-tificationdatawhere.Intransientregimes,however,wehaveveryfewdatapointsandwewishtomakerobustestimatesofmodelbehaviour,whicharenowpossible.TherobustinferenceoftheGPap-proachinsparselypopulatedspacesmakesitpartic-82)1+0t(y−2−4−6−83213201−10−2−1−2u(t)−3−3x(t)(a)Truemapping
54.54433.523)1+1)2.51+(y(σ201.5−11−20.5−3033213232120101−10−10−2−1−2−2−1−2u(t)−3−3x(t)u(t)−3−3x(t)(b)At2datapoints(c)
80.760.0.52)1)0.41+0+(y(σ−20.3−40.2−60.1−8033213221320101−10−10−2−1−2−2−1−2u(t)−3−3x(t)u(t)−3−3x(t)(d)At20datapoints(e)
810.820.6)1)1+0+(y(σ−20.4−40.2−6−8033213232120101−100−2−1−1−1−2−2−2u(t)−3−3−3x(t)u(t)−3x(t)(f)At100datapoints(g)
Fig.3.Meansurface(mesh)
overthespace,withuncer-
taintysurfaces.
ularlypromisinginmultivariableandhigh-ordersys-tems.Furtherworkisunderwaytoaddressthecontrolofmultivariablesystems,nonminimum-phasesystemsandimplementationefficiencyissues.
7.ACKNOWLEDGEMENTS
BothauthorsaregratefulforsupportfromFONDE-CYTProject700397.RM-SgratefullyacknowledgesthesupportoftheMulti-AgentControlResearch
TrainingNetworksupportedbyECTMRgrantHPRN-CT-1999-00107,andtheEPSRCgrantModernsta-tisticalapproachestooff-equilibriummodellingfornonlinearsystemcontrolGR/M76379/01.
8.REFERENCES
Bittanti,S.andL.Piroddi(1997).Neuralimplemen-tationofGMVcontrolshemesbasedonaffineinput/outputmodels.Proc.IEEControlTheoryAppl.(6),521–530.
Chen,F.C.andH.Khalil(1995).Adaptivecontrolof
aclassofnonlineardiscrete-timesystems.IEEE.Trans.AutomaticControl40(5),791–801.
Fabri,S.andV.Kadirkamanathan(1998).Dualadap-tivecontrolofstochasticsystemsusingneuralnetworks.Automatica14(2),245–253.
Filatov,N.M.andH.Unbehauen(2000).Surveyof
adaptivedualcontrolmethods.Proc.IEEControlTheoryAppl.(1),119–128.
Leith,D.J.,R.Murray-SmithandW.E.Leit-head(2000).Nonlinearstructureidentification:AGaussianProcessprior/Velocity-basedapproach.In:Control2000,Cambridge.
Liang,F.andH.A.ElMargahy(1994).Self-tuning
neurocontrolofnonlinearsystemsusinglocal-izedpolynomialnetworkswithCLIcells.In:ProceedingsoftheAmericanControlConfer-ence.Baltimore,Maryland.pp.2148–2152.
Murray-Smith,R.andA.Girard(2001).Gaussian
ProcesspriorswithARMAnoisemodels.In:IrishSignalsandSystemsConference,Maynooth.pp.147–152.
Murray-Smith,R.,T.A.JohansenandR.Shorten
(1999).Ontransientdynamics,off-equilibriumbehaviourandidentificationinblendedmultiplemodelstructures.In:EuropeanControlConfer-ence,Karlsruhe,1999.pp.BA–14.
Narendra,K.S.andP.Parthasarathy(1990).Identifi-cationandcontrolofdynamicalsystemsusingneuralnetworks.IEEE.Trans.NeuralNetworks1(1),4–27.
O’Hagan,A.(1978).Oncurvefittingandoptimalde-signforregression.JournaloftheRoyalStatisti-calSocietyB40,1–42.
O’Hagan,A.(1992).SomeBayesiannumericalanal-ysis.In:BayesianStatistics4(J.M.Bernardo,J.O.Berger,A.P.DawidandA.F.M.Smith,Eds.).pp.345–363.OxfordUniversityPress.Williams,C.K.I.(1998).PredictionwithGaussian
processes:Fromlinearregressiontolinearpre-dictionandbeyond.In:LearningandInferenceinGraphicalModels(M.I.Jordan,Ed.).pp.599–621.Kluwer.
Wittenmark,R.(1995).Adaptivedualcontrolmeth-ods:Anoverview.In:Proceedingsofthe5thIFACSymposiumonAdaptivesystemsinControlandSignalProcessing.Budapest.pp.67–92.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务