您好,欢迎来到尔游网。
搜索
您的当前位置:首页冀教版中考数学《第11讲反比例函数》知识梳理

冀教版中考数学《第11讲反比例函数》知识梳理

来源:尔游网


第11讲 反比例函数的图象和性质

一、 知识清单梳理 知识点一:反比例函数的概念及其图象、性质 k(1)定义:形如y=(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的x取值范围是非零的一切实数. 1.反比例函(2)形式:反比例函数有以下三种基本形式: 数的概念 关键点拨与对应举例 例:函数y=3xm+1,当m=-2时,则该函数是反比例函数. k①y=;②y=kx-1; ③xy=k.(其中k为常数,且k≠0) xk的符号 k>0 经过象限 (1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k. 失分点警示 (2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断. 例:若(a,b)在反比例函数 k<0 图象经过第每个象限内,函数y的值随x的增大而减小. 一、三象限 (x、y同号) 图象经过第每个象限内,函数y的值随x的增大而增大. 二、四象限 (x、y异号) 3.反比例函数的图象特征 (1)由两条曲线组成,叫做双曲线; (2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线. 只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可. yk的x图象上,则(-a,-b)在该函数图象上.(填“在\"、\"不在\") 例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x. 4.待定系数法 知识点二 :反比例系数的几何意义及与一次函数的综合 k(1)意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线x与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. 失分点警示 已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:5.系数k的(2)常见的面积类型: 几何意义 图见学练优RJ九数上前面四页“方法、易错”的此内容下的图片 y3或xy3. x(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,涉及与面积有关的问题时,①要善于把可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义. 思想求解. 6.与一次函(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解 数的综合 (3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.第1页 共2页

也可逐一选项判断、排除. (4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD. 知识点三:反比例函数的实际应用 (1题意找出自变量与因变量之间的乘积关系; 7 .一般步骤

(2设出函数表达式; (3)依题意求解函数表达式; (4)根据反比例函数的表达式或性质解决相关问题. 第2页 共2页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务