数列求和的常用方法
1.公式法
(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式,注意等比数列公比q的取值情况要分q=1或q≠1.
2.倒序相加法
如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.
4.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
5.分组转化求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.
6.并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并
项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
方法突破
1.等差、等比数列的求和
数列求和,如果是等差、等比数列的求和,可直接用求
和公式求解,要注意灵活选取公式.
2.非等差、等比数列的一般数列求和的两种思路
(1)转化的思想,即将一般数列设法转化为等差或等比数
列,这一思想方法往往通过通项分解或错位相减来完成;
(2)不能转化为等差或等比的特殊数列,往往通过裂项相消
法、倒序相加法等来求和.要记牢常用的数列求和的方法.