∗
AnOverview
ComputerScienceDept.
CornellUniversity
http://www.cs.cornell.edu/home/halpern
JosephY.Halpern
†
halpern@cs.cornell.edu
ABSTRACT
Anintelligentagentwilloftenbeuncertainaboutvariouspropertiesofitsenvironment,andwhenactinginthatenvi-ronmentitwillfrequentlyneedtoquantifyitsuncertainty.Forexample,iftheagentwishestoemploytheexpected-utilityparadigmofdecisiontheorytoguideitsactions,shewillneedtoassigndegreesofbelief(subjectiveprobabili-ties)tovariousassertions.Ofcourse,thesedegreesofbeliefshouldnotbearbitrary,butrathershouldbebasedontheinformationavailabletotheagent.Thispaperprovidesabriefoverviewofoneapproachforinducingdegreesofbe-lieffromveryrichknowledgebasesthatcanincludeinfor-mationaboutparticularindividuals,statisticalcorrelations,physicallaws,anddefaultrules.Theapproachiscalledtherandom-worldsmethod.Themethodisbasedontheprinci-pleofindifference:ittreatsalloftheworldstheagentcon-siderspossibleasbeingequallylikely.Itisabletointegratequalitativedefaultreasoningwithquantitativeprobabilisticreasoningbyprovidingalanguageinwhichbothtypesofin-formationcanbeeasilyexpressed.Anumberofdesideratathatariseindirectinference(reasoningfromstatisticalin-formationtoconclusionsaboutindividuals)anddefaultrea-soningfollowdirectlyfromthesemanticsofrandomworlds.Forexample,randomworldscapturesimportantpatternsofreasoningsuchasspecificity,inheritance,indifferencetoirrelevantinformation,anddefaultassumptionsofindepen-dence.Furthermore,theexpressivepowerofthelanguageusedandtheintuitivesemanticsofrandomworldsallowthe
manner;wecallthismethodtherandom-worldsmethod.Mytalkwillfocusonthisworkbecause,althoughitisnotsorecent,itdoesseemquiterelevanttorecentworkinthedatabasecommunity.HereIbrieflyreviewtheapproach(almostallthediscussionistakenfrom[4],withverylittlechange)anddiscusstheconnectiontodatabasework.
Therehasbeenagreatdealofworkaddressingaspectsofthisgeneralproblem.Twolargebodiesofworkthatareparticularlyrelevantaretheworkondirectinference,go-ingbacktoReichenbach[25],andthevariousapproachestononmonotonicreasoning.Directinferencedealswiththeproblemofderivingdegreesofbelieffromstatisticalinfor-mation,typicallybyattemptingtofindasuitablereferenceclasswhosestatisticscanbeusedtodeterminethedegreeofbelief.Forinstance,asuitablereferenceclassforthepa-tientEricmightbetheclassofallpatientswithjaundice.Whiledirectinferenceisconcernedwithstatisticalknowl-edge,nonmonotonicreasoningdealsmostlywithknowledgebasesthatcontaindefaultrules.Noneofthesystemspro-posedforeitherreference-classreasoningornonmonotonicreasoningcandealadequatelywiththelargeandcomplexknowledgebasesthatweareinterestedin.Inparticular,nonecanhandlerichknowledgebasesthatmaycontainacombinationoffirst-order,default,andstatisticalinforma-tion.
WeassumethattheinformationintheknowledgebaseisexpressedinavariantofthelanguageintroducedbyBac-chus[1].Bacchus’slanguageaugmentsfirst-orderlogicbyallowingstatementsoftheformHep(x)|Jaun(x)x=0.8,whichsaysthat80%ofpatientswithjaundicehavehepati-tis.Notice,however,thatinfinitemodelsthisstatementhasthe(probablyunintended)consequencethatthenumberofpatientswithjaundiceisamultipleof5.Toavoidthisprob-lem,weuseapproximateequalityratherthanequality,writ-ingHep(x)|Jaun(x)x≈0.8,read“approximately80%ofpatientswithjaundicehavehepatitis”.Intuitively,thissaysthattheproportionofjaundicedpatientswithhepatitisiscloseto80%:i.e.,withinsometoleranceτof0.8.Thisinter-pretationseemsquiteappropriatefordatabaseapplications,whereitisunlikelythatwewillbecompletelyconfidentinthestatisticsthatwehave.Theuseofapproximateequal-ityhasthefurtheradvantageoflettingusexpressdefaultinformation.Weinterpretastatementas“Birdstypicallyfly”asexpressingthestatisticalassertion“Almostallbirdsfly”.Usingapproximateequality,wecanrepresentthisasFly(x)|Bird(x)x≈1.(Thisinterpretationiscloselyre-latedtovariousapproachesapplyingprobabilisticsemanticstononmonotoniclogic;seePearl[24]foranoverview.)
Havingdescribedthelanguageinwhichourknowledgebaseisexpressed,wenowneedtodecidehowtoassignde-greesofbeliefgivenaknowledgebase.Perhapsthemostwidelyusedframeworkforassigningdegreesofbelief(whichareessentiallysubjectiveprobabilities)istheBayesianparadigm.There,oneassumesaspaceofpossibilitiesandaprobabil-itydistributionoverthisspace(thepriordistribution),andcalculatesposteriorprobabilitiesbyconditioningonwhatisknown(inourcase,theknowledgebase).Tousethisap-proach,wemustspecifythespaceofpossibilitiesandthedistributionoverit.InBayesianreasoning,thereisrela-tivelylittleconsensusastohowthisshouldbedoneingen-eral.Indeed,theusualphilosophyisthatthesedecisionsaresubjective.
Ourapproachisdifferent.WeassumethattheKBcon-tainsalltheknowledgetheagenthas,andweallowaveryexpressivelanguagesoastomakethisassumptionreason-able.ThisassumptionmeansthatanyknowledgetheagenthasthatcouldinfluencethepriordistributionisalreadyincludedintheKB.Asaconsequence,wegiveasingleuniformconstructionofaspaceofpossibilitiesandadis-tributionoverit.Oncewehavethisprobabilityspace,wecanusetheBayesianapproach:TocomputetheprobabilityofanassertionφgivenKB,weconditiononKB,andthencomputetheprobabilityofφusingtheresultingposteriordistribution.
Sohowdowechoosetheprobabilityspace?Onegeneralstrategy,discussedbyHalpern[18],istogivesemanticstodegreesofbeliefintermsofaprobabilitydistributionoverasetofpossibleworlds,orfirst-ordermodels.Thissemanticsclarifiesthedistinctionbetweenstatisticalassertionsandde-greesofbelief.Assuggestedabove,astatisticalassertionsuchasHep(x)|Jaun(x)x≈0.8istrueorfalseinapartic-ularworld,dependingonhowmanyjaundicedpatientshavehepatitisinthatworld.Ontheotherhand,adegreeofbeliefisneithertruenorfalseinaparticularworld—ithasseman-ticsonlywithrespecttotheentiresetofpossibleworldsandaprobabilitydistributionoverthem.Thereisnonecessaryconnectionbetweentheinformationintheagent’sKBandthedistributionoverworldsthatdeterminesherdegreesofbelief.However,weclearlywanttheretobesomeconnec-tion.Inparticular,wewanttheagenttobaseherdegreesofbeliefsonherinformationabouttheworld,includingherstatisticalinformation.Therandom-worldsmethodturnsouttobeapowerfultechniqueforaccomplishingthis.
Todefineourprobabilityspace,wehavetochooseanappropriatesetofpossibleworlds.Givensomedomainofindividuals,westipulatethatthesetofworldsissimplythesetofallfirst-ordermodelsoverthisdomain.Thatis,apos-sibleworldcorrespondstoaparticularwayofinterpretingthesymbolsintheagent’svocabularyoverthedomain.Inourcontext,wecanassumethatthe“trueworld”hasafinitedomain,sayofsizeN.Infact,withoutlossofgenerality,weassumethatthedomainis{1,...,N}.
Havingdefinedtheprobabilityspace(thesetofpossibleworlds),wemustconstructaprobabilitydistributionoverthisset.Forthis,wegiveperhapsthesimplestpossibledef-inition:weassumethatallthepossibleworldsareequallylikely(thatis,eachworldhasthesameprobability).Thiscanbeviewedasanapplicationoftheprincipleofindif-ference.Sinceweareassumingthatalltheagentknowsisincorporatedinherknowledgebase,theagenthasnoapri-orireasontopreferoneworldovertheother.Itisthereforereasonabletoviewallworldsasequallylikely.Interestingly,theprincipleofindifference(sometimesalsocalledtheprin-cipleofinsufficientreason)wasoriginallypromotedaspartoftheverydefinitionofprobabilitywhenthefieldwasorigi-nallyformalizedbyJacobBernoulliandothers;theprinciplewaslaterpopularizedfurtherandappliedwithconsiderablesuccessbyLaplace.(See[17]forahistoricaldiscussion.)Itlaterfellintodisreputeasageneraldefinitionofprobabil-ity,largelybecauseoftheexistenceofparadoxesthatarisewhentheprincipleisappliedtoinfiniteorcontinuousprob-abilityspaces.However,theprincipleofindifferencecanbeanaturalandeffectivewayofassigningdegreesofbeliefincertaincontexts,andinparticular,inthecontextwherewerestrictattentiontoafinitecollectionofworlds.
Inanycase,combiningthechoiceofpossibleworldswith
theprincipleofindifference,weobtainapriordistribution.WecannowinduceadegreeofbeliefinφgivenKBbyconditioningonKBtoobtainaposteriordistributionandthencomputingtheprobabilityofφaccordingtothisnewdistribution.Itiseasytoseethat,sinceeachworldisequallylikely,thedegreeofbeliefinφgivenKBisthefractionofpossibleworldssatisfyingKBthatalsosatisfyφ.
Oneproblemwiththeapproachasstatedsofaristhat,ingeneral,wedonotknowthedomainsizeN.Typically,how-ever,Nisknowntobelarge.WethereforeapproximatethedegreeofbeliefforthetruebutunknownNbycomputingthelimitingvalueofthisdegreeofbeliefasNgrowslarge.Theresultistherandom-worldsmethod.(Ofcourse,ifadatabaseincludesinformationaboutthedomainsize,thenwecanjustuseit.)
Thekeyideasintheapproacharenotnew.ManyofthemcanbefoundintheworkofJohnson[19]andCar-nap[6,7],althoughtheseauthorsfocusonknowledgebasesthatcontainonlyfirst-orderinformation,andforthemostpartrestricttheirattentiontounarypredicates.RelatedapproacheshavebeenusedinthemorerecentworksofShas-tri[28]andofParisandVencovska[23],inthecontextofaunarystatisticallanguage.Chuaqui[10]sharestheideaofbasingatheoryofprobabilisticreasoninguponnotionsofindifferenceandsymmetry,althoughthedetailsofhisapproacharequitedifferentfromours.
Havingdefinedthemethod,howdowejudgeitsreason-ableness?Fortunately,aswementioned,therearetwolargebodiesofworkonrelatedproblemsfromwhichwecandrawguidance:reference-classreasoninganddefaultreasoning.Whilenoneofthesolutionssuggestedfortheseproblemsseemsentirelyadequate,theyearsofresearchhaveresultedinsomestrongintuitionsregardingwhatanswersareintu-itivelyreasonableforcertaintypesofqueries.Interestingly,theseintuitionsoftenleadtoidenticaldesiderata.Inpar-ticular,mostsystems(ofbothtypes)espousesomeformofpreferenceformorespecificinformationandtheabilitytoignoreirrelevantinformation.Weshowthattherandom-worldsapproachsatisfiesthesedesiderata.Moreover,intheabsenceofinformation,therandom-worldmethodmakesattributesindependent.Ratherthanhavingtoassumein-dependence,asisdoneinmanyapplications,itisaprov-ableconsequenceoftheapproach.Infact,alltheseprop-ertiesfollowfromtwogeneraltheorems.Weprovethat,inthosecaseswherethereisaspecificpieceofstatisticalin-formationthatshould“obviously”beusedtodetermineadegreeofbelief,randomworldsdoesinfactusethisinfor-mation.Thedifferentdesiderata,suchasapreferenceformorespecificinformationandanindifferencetoirrelevantinformationfollowaseasycorollaries.Wealsoshowthatrandomworldsprovidesreasonableanswersinmanyothercontexts,notcoveredbythestandardspecificityandirrele-vanceheuristics.Thus,therandom-worldsmethodisindeedapowerfulone,thatcandealwithrichknowledgebasesandstillproducetheanswersthatpeoplehaveidentifiedasbeingthemostappropriateones.
Ofcourse,totheextentthatwearegoingtousethemethod,wehavetocalculatedegreesofbelief.Ingeneral,theproblemofdecidingwhetherthedegreeofbeliefevenexists(thatis,whetherthereisalimitingprobability)isundecidable[16,20].Wecangetdecidabilityifwerestricttounaryknowledgebases,wheretherearenofunctionsym-bolsandallpredicatesareunary[15,20].Moreimportantly,
asshownin[14],thereisacloseconnectionbetweenrandomworldsandmaximumentropyinthecaseofunaryknowledgebases.Basedonthisconnection,weshowthatinmanycasesofinterestamaximum-entropycomputationcanbeusedtocalculateanagent’sdegreeofbelief.
Theconnectionbetweenrandomworldsonmaximumen-tropyreliescriticallyontheassumptionthatwearecon-ditioningonaunaryformula.Infact,inalmostallappli-cationswheremaximumentropyhasbeenused(andwhereitsapplicationcanbebestjustifiedintermsoftherandom-worldsmethod)theknowledgebaseisdescribedintermsofunarypredicates(or,equivalently,unaryfunctionswithafiniterange).Forexample,inphysicsapplicationsweareinterestedinsuchpredicatesasquantumstate(see[13]).AIapplicationsandexpertsystemsalsooftenuseonlyunarypredicates[9]suchassymptomsanddiseases.Ingeneral,manypropertiesofinterestcanbeexpressedusingunarypredicates,sincetheyexpresspropertiesofindividuals.In-deed,agoodcasecanbemadethatstatisticianstendtoreformulateallproblemsintermsofunarypredicates,sinceaneventinasamplespacecanbeidentifiedwithaunarypredicate[27].Infact,inmostcaseswherestatisticsareused,wehaveabasicunitinmind(anindividual,afamily,ahousehold,etc.),andtheproperties(predicates)wecon-sideraretypicallyrelativetoasingleunit(i.e.,unarypred-icates).Thus,resultsconcerningcomputingtheasymptoticconditionalprobabilityifweconditiononunaryformulasaresignificantinpractice.
Ontheotherhand,fordatabaseapplications,itisquitestandardtoseebinaryrelationlike“Manager-of”.Notethattherandom-worldsmethodmakessenseforpredicatesofarbitraryarity;itisjusttheconnectiontomaximumentropythatislost.
Moregenerally,howdoestherandom-worldsmethodre-latetoworkindatabases?Ibrieflydiscussafewpointsofcontact:
•Oneapplicationisobvious:Therearemanystatis-ticaldatabasesavailable,suchasthosederivedfromcensusdataandeconomicdata.Therandom-worldsmethodgivesaprincipledmethodofderivingconclu-sionsaboutparticularindividualsbasedonthestatis-ticalinformation.•Therehasalsobeenagreatdealofwork,especiallyre-cently,onprobabilisticandimprecisedatabases;see,forexample,[8]andthemorerecent[5]and[12]andthereferencestherein.1Probabilisticdatabasesallowprobabilitiestobeassociatedwithtuples.Roughlyspeaking,theprobabilityrepresentsthelikelihoodthatthetupleisinthedatabase.Insomesettings,theprob-abilityisbestinterpretedasstatisticalinformation.Forexample,Burdicketal.[5]giveanexampleofanautomobiledatabasethatlistsmakesofcarsandtheproblemfromwhichtheyaresuffering(“brakeprob-lem”,“transmissionproblem”,etc.).Theprobabilisticinformationcouldbeinterpretedassummarizingsta-tisticalinformation,inwhichcasethetechniquesusedhereapplyimmediatelytodrawconclusions.Alterna-tively,itcouldbeinterpretedasrepresentingadegree
ofbelief(anagent’ssubjectivebeliefthat,say,thecarissufferingfromabrakeproblem).Themethodasde-scribedcannotdealwithknowledgebasesthatincludedegreesofbelief;however,in[3],wediscussthreewaysthattherandom-worldsmethodcanbeextendedtohandledegreesofbelief.
•Random-worldsstylemethodshavebeenusedtodefinenotionsofprivacy,whereallinstancesofadatabaseconsistentwithwhatisknownareconsideredequallylikely;cf.[22].Itseemsthatthereisnowagreatdealofinterestinthedatabasecommunityinfindingwaystodrawinferencesfromdatabasesthatincludeincompleteandimprecisein-formation.Therandom-worldsmethodandotherrelatedapproaches(see[2])mayprovetobeausefultoolfordo-ingthis.Indeed,asIhavementioned,random-worldsstylemethodshavealreadybeenusedinthecontextofprivacy;theyhavealsobeenusedinanalyzingprobabilisticdatabases[11].Isuspectthatmoreapplicationswillbefoundaswell.
2.REFERENCES
[1]F.Bacchus.RepresentingandReasoningwith
ProbabilisticKnowledge.MITPress,Cambridge,Mass.,1990.
[2]F.Bacchus,A.J.Grove,J.Y.Halpern,andD.Koller.
Fromstatisticstobelief.InProc.TenthNationalConferenceonArtificialIntelligence(AAAI’92),pages602–608.1992.
[3]F.Bacchus,A.J.Grove,J.Y.Halpern,andD.Koller.
Generatingnewbeliefsfromold.InProc.TenthConferenceonUncertaintyinArtificialIntelligence(UAI’94),pages37–45,1994.
[4]F.Bacchus,A.J.Grove,J.Y.Halpern,andD.Koller.
Fromstatisticalknowledgebasestodegreesofbelief.ArtificialIntelligence,87(1–2):75–143,1996.[5]D.Burdick,P.M.Deshpande,T.S.Jayram,
R.Ramakrishnan,andS.Vaithyanathan.OLAPoveruncertainandimprecisedata.InVLDB’05,
Proceedingsofthe31stInt.ConferenceonVeryLargeDatabases,pages970–981,2005.
[6]R.Carnap.LogicalFoundationsofProbability.
UniversityofChicagoPress,Chicago,1950.
[7]R.Carnap.TheContinuumofInductiveMethods.
UniversityofChicagoPress,Chicago,1952.[8]R.CavalloandM.Pittarelli.Thetheoryof
probabilisticdatabases.InVLDB’87,Proceedingsofthe13thInt.ConferenceonVeryLargeDatabases,pages71–87,1987.
[9]P.C.Cheeseman.Amethodofcomputinggeneralized
Bayesianprobabilityvaluesforexpertsystems.InProc.EighthInternationalJointConferenceonArtificialIntelligence(IJCAI’83),pages198–202.1983.
[10]R.Chuaqui.Truth,Possibility,andProbability:New
LogicalFoundationsofProbabilityandStatisticalInference.North-Holland,Amsterdam,1991.
[11]N.DalviandD.Suciu.Efficientqueryevaluationon
probabilisticdatabases.InVLDB’04,Proceedingsofthe30thInt.ConferenceonVeryLargeDatabases,pages8–875,2004.
[12]N.Dalvi,G.Miklau,andD.Suciu.Asymptotic
conditionalprobabilitiesforconjunctivequeries.InProc.InternationalConferenceonDatabaseTheory,pages287–303,2005.
[13]K.G.DenbighandJ.S.Denbigh.EntropyinRelation
toIncompleteKnowledge.CambridgeUniversityPress,Cambridge,U.K.,1985.
[14]A.J.Grove,J.Y.Halpern,andD.Koller.Random
worldsandmaximumentropy.JournalofA.I.Research,2:33–88,1994.
[15]A.J.Grove,J.Y.Halpern,andD.Koller.Asymptotic
conditionalprobabilities:thenon-unarycase.JournalofSymbolicLogic,61(1):250–275,1996.
[16]A.J.Grove,J.Y.Halpern,andD.Koller.Asymptotic
conditionalprobabilities:theunarycase.SIAMJournalonComputing,25(1):1–51,1996.
[17]I.Hacking.TheEmergenceofProbability.Cambridge
UniversityPress,Cambridge,U.K.,1975.
[18]J.Y.Halpern.Ananalysisoffirst-orderlogicsof
probability.ArtificialIntelligence,46:311–350,1990.[19]W.E.Johnson.Probability:Thedeductiveand
inductiveproblems.Mind,41(1):409–423,1932.[20]M.I.Liogon’ki˘ı.Ontheconditionalsatisfiabilityratio
oflogicalformulas.MathematicalNotesoftheAcademyoftheUSSR,6:856–861,1969.
[21]R.D.LuceandH.Raiffa.GamesandDecisions.
Wiley,NewYork,1957.
[22]A.Machanavajjhala,J.Gehrke,D.Kifer,andM.
Venkitasubramanian,ℓ-diversity:privacybeyondk-anonymity.InProc.Int.Conf.DataEngineering(ICDE2006),2006.
[23]J.B.ParisandA.Vencovska.Ontheapplicabilityof
maximumentropytoinexactreasoning.InternationalJournalofApproximateReasoning,3:1–34,19.[24]J.Pearl.Probabilisticsemanticsfornonmonotonic
reasoning:asurvey.InProc.FirstInternational
ConferenceonPrinciplesofKnowledgeRepresentationandReasoning(KR’),pages505–516,19.
ReprintedinG.ShaferandJ.Pearl(Eds.),ReadingsinUncertainReasoning,pp.699–710.SanFrancisco:MorganKaufmann,1990.
[25]H.Reichenbach.TheTheoryofProbability.University
ofCaliforniaPress,Berkeley,1949.TranslationandrevisionofGermanedition,publishedasWahrscheinlichkeitslehre,1935.
[26]L.J.Savage.FoundationsofStatistics.Wiley,New
York,1954.
[27]G.Shafer.Personalcommunication,1993.
[28]L.Shastri.Defaultreasoninginsemanticnetworks:a
formalizationofrecognitionandinheritance.ArtificialIntelligence,39(3):285–355,19.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务