江苏省淮安市盱眙县马坝初级中学2015—2016学年度第一学期学科竞赛 八年级数学(决赛)
参
一、选择题
1.C 2.D 3.C 4.C 5.A 6.C 7.A 8.A 二、填空题
9.2 10.65°11.等腰直角三角形 12.6,4或5,5 16.
245 17.20 18.(-3,-4) 三、解答题 19.(1)714 (2)11910
13.k<2 14.(0,2)或(0,-4)15.x4
y2
20. (4分+6分=10分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1). (1)若折叠后点D恰为AB的中点(如图2),则θ=30° ;
(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处(如图3),求a的值.
解答如下所示: 分析
(1)延长ND交OA的延长线于M,根据折叠性质得∠CON=∠DON=θ,∠ODN=∠C=90°,由点D为AB的中点得到D点为MN的中点,所以OD垂直平分MN,则OM=ON,根据等腰三角形的性质得∠MOD=∠NOD=θ,则∠θ+∠θ+∠θ=90°,计算得到∠θ=30°; (2)作ED⊥OA于D,根据折叠性质得AB⊥直线l,OD=OC=3,DE=BC=2,由于θ=45°,AB⊥直线l,即直线l平分∠AOB,则∠A=45°,所以△ADE为等腰直角三角形,则AD=DE=2,所以OA=OD+AD=3+2=5,即a=5. 解答
解:(1)如图2,延长ND交OA的延长线于M,
∵四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处, ∴∠CON=∠DON=θ,∠ODN=∠C=90°, ∵点D为AB的中点, ∴D点为MN的中点,
∴OD垂直平分MN, ∴OM=ON,
∴∠MOD=∠NOD=θ,
∴∠θ+∠θ+∠θ=90°, ∴∠θ=30°; 故答案为30°;
(2)如图3,作ED⊥OA于D,
∵四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处,
∴AB⊥直线l,OD=OC=3,DE=BC=2, ∵θ=45°,AB⊥直线l, 即直线l平分∠AOB, ∴∠A=45°,
∴△ADE为等腰直角三角形, ∴AD=DE=2,
∴OA=OD+AD=3+2=5, ∴a=5. 点评
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了线段垂直平分线的性质.
21.(4分+4分+4分=12分)问题背景:
如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由; 实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离. 考点 全等三角形的判定与性质. 分析: 问题背景:根据全等三角形对应边相等解答; 探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可; 实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EAF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可. 解答: 解:问题背景:EF=BE+DF; 探索延伸:EF=BE+DF仍然成立. 证明如下:如图,延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG, 在△ABE和△ADG中, , ∴△ABE≌△ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠EAF=∠BAD, ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF, ∴∠EAF=∠GAF, 在△AEF和△GAF中, , ∴△AEF≌△GAF(SAS), ∴EF=FG, ∵FG=DG+DF=BE+DF, ∴EF=BE+DF; 实际应用:如图,连接EF,延长AE、BF相交于点C, ∵∠AOB=30°+90°+(90°﹣70°)=140°, ∠EOF=70°, ∴∠EAF=∠AOB, 又∵OA=OB, ∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF=AE+BF成立, 即EF=1.5×(60+80)=210海里. 答:此时两舰艇之间的距离是210海里. 本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点. 点评:22.(4分+4分+4分=12分)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点. (1)如图1,当点P与点Q重合时,AE与BF的位置关系是 AE∥BF ,QE与QF的数量关系式 QE=QF ; (2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明; (3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明. 考点 全等三角形的判定与性质;直角三角形斜边上的中线. 分析:( 1)证△BFQ≌△AEQ即可; (2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可; (3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可. 解答:解 :(1)AE∥BF,QE=QF, 理由是:如图1,∵Q为AB中点, ∴AQ=BQ, ∵BF⊥CP,AE⊥CP, ∴BF∥AE,∠BFQ=∠AEQ, 在△BFQ和△AEQ中 ∴△BFQ≌△AEQ(AAS), ∴QE=QF, 故答案为:AE∥BF,QE=QF. (2)QE=QF, 证明:如图2,延长FQ交AE于D, ∵AE∥BF, ∴∠QAD=∠FBQ, 在△FBQ和△DAQ中 ∴△FBQ≌△DAQ(ASA), ∴QF=QD, ∵AE⊥CP, ∴EQ是直角三角形DEF斜边上的中线, ∴QE=QF=QD, 即QE=QF. (3)(2)中的结论仍然成立, 证明:如图3, 延长EQ、FB交于D, ∵AE∥BF, ∴∠1=∠D, 在△AQE和△BQD中 , ∴△AQE≌△BQD(AAS), ∴QE=QD, ∵BF⊥CP, ∴FQ是斜边DE上的中线, ∴QE=QF. 点评:本 题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.
解;(1)如图所示:快车一共行驶了7小时,中间停留了1小时,慢车一共行驶了6小时,
∵由图可得出两地相距360km,
∴快车速度为:360×2÷6=120(km/h),慢车速度为:360÷6=60(km/h)。
(2)∵快车速度为:120km/h,∴360÷120=3(h)。
∴A点坐标为(3,360),B点坐标为(4,360)。
可得E点坐标为:(6,360),D点坐标为:(7,0)。
设BD解析式为:y=kx+b,
则,解得:。
∴BD解析式为:y=﹣120x+840。
设OE解析式为:y=ax,
∴360=6a,解得:a=60。
∴OE解析式为:y=60x。
当快、慢两车距各自出发地的路程相等时:60x=﹣120x+840,解得:x=,
答:出发小时,快、慢两车距各自出发地的路程相等。
(3)根据两车第一次相遇前可以相距150km,第一次相遇后两车再次相距150km,当快车到达乙地后返回 时两车可以相距150km,
23.(4分+4分+4分=12分)快、慢两车分别从相距360千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快、慢两车距各自出发地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示. 请结合图象信息解答下列问题: (1)快、慢两车的速度各是多少? (2)出发多少小时,快、慢两车距各自出发地的路程相等? (3)直接写出在慢车到达甲地前,快、慢两车相距的路程为150千米的次数. 综上所述:在慢车到达甲地前,快、慢两车相距的路程为150千米的次数是3次。
试题分析:(1)根据图中数据得出两车行驶的距离与行驶时间的关系进而得出两车的速度。
(2)根据两车的速度得出B,D,E点坐标,进而得出设BD和OE直线解析式,进而得出交点坐标横坐标即可得出答案。
(3)分别根据两车相遇以及两车相遇后两车距离为150km时的次数即可。
24. (6分+6分=12分)南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示: 运输工具 途中速度(千米/时) 途中费用(元/千米) 装卸费用(元) 装卸时间(小时) 飞机 200 16 1000 2 火车 100 4 2000 4 汽车 50 8 1000 2 若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x千米.
(1)如果用Wl、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出Wl、W2、W3与小x间的函数关系式.
(2)应采用哪种运输方式,才使运输时的总支出费用最小?
解 析
每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由Wl-W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.