您好,欢迎来到尔游网。
搜索
您的当前位置:首页(完整)初中数学难题精选(附答案)

(完整)初中数学难题精选(附答案)

来源:尔游网


经典难题(一)

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二)

A

P D

G A

D

O

F

B

C E

B C

第 1 页 共 23 页

3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、

A D

D2 A2 CC1、DD1的中点.

A1

D1 求证:四边形A2B2C2D2是正方形.(初二)

B1

C1

B2

4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC

F 的延长线交MN于E、F. 求证:∠DEN=∠F.

N

A D C E B C2

C

M B

第 2 页 共 23 页

经典难题(二)

1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.(初二)

B

2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、CG E 及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.(初二)

C B M O · A O · H E M D C D N P A Q 第 3 页 共 23 页

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MNE C A 于P、Q. Q M · N P 求证:AP=AQ.(初二) · O B

D

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,

点P是EF的中点.

求证:点P到边AB的距离等于AB的一半.(初二) E

A D G C P Q B F

经典难题(三)

第 4 页 共 23 页

1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

求证:CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

求证:AE=AF.(初二)

B C E F A D B C A F D E 第 5 页 共 23 页

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

求证:PA=PF.(初二)

4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于A B、D.求证:AB=DC,BC=AD.(初三)

P E C B O D F B P C E A D F 经典难题(四)

第 6 页 共 23 页

1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.(初二)

P

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二)

B

3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三) A D

A P C D B C A 第 7 页 共 23 页

B C

4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)

F

B P E C A D 经典难题(五)

第 8 页 共 23 页

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:

≤L<2.

A

P

B C

2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

A D P B C 第 9 页 共 23 页

3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长. A

P D

B C

4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,A ∠EBA=200,求∠BED的度数.

D E B

C 经典难题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得

EOGOCO==,又CO=EO,所以CD=GF得证。 GFGHCD第 10 页 共 23 页

2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点, 连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,

1110由A2E=12A1B1=2B1C1= FB2 ,EB2=2AB=2BC=FC1 ,又∠GFQ+∠Q=90和

∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,

第 11 页 共 23 页

可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等, 从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=

∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

第 12 页 共 23 页

经典难题(二)

1.(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF,

又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200,

从而可得∠BOM=600, 所以可得OB=2OM=AH=AO,

得证。

3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。

由于

ADACCD2FDFD====, ABAEBE2BGBG 由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,

第 13 页 共 23 页

∠AOP=∠AOQ,从而可得AP=AQ。

4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=

由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。 从而可得PQ=

EG+FH。 2AI+BIAB= ,从而得证。 22

经典难题(三)

1.顺时针旋转△ADE,到△ABG,连接CG. 由于∠ABG=∠ADE=900+450=1350

第 14 页 共 23 页

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。 推出AE=AG=AC=GC,可得△AGC为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。

由AC=CE=2GC=2CH,

可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,

又∠FAE=900+450+150=1500, 从而可知道∠F=150,从而得出AE=AF。

第 15 页 共 23 页

3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。

令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tan∠BAP=tan∠EPF=

ZX=,可得YZ=XY-X2+XZ, YY-X+Z 即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF , 得到PA=PF ,得证 。

经典难题(四)

1. 顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。

第 16 页 共 23 页

可得△PQC是直角三角形。

所以∠APB=1500 。

2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC. 可以得出∠ABP=∠ADP=∠AEP,可得:

AEBP共圆(一边所对两角相等)。 可得∠BAP=∠BEP=∠BCP,得证。

3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:

第 17 页 共 23 页

BEAD=,即AD•BC=BE•AC, ① BCAC 又∠ACB=∠DCE,可得△ABC∽△DEC,既得

ABDE=,即AB•CD=DE•AC, ② ACDC 由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。

4.过D作AQ⊥AE ,AG⊥CF ,由SVADE=

SYABCD=SVDFC,可得: 2

AEgPQAEgPQ=,由AE=FC。 22 可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。

第 18 页 共 23 页

经典难题(五)

1.(1)顺时针旋转△BPC 600 ,可得△PBE为等边三角形。

既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,

即如下图:可得最小L=

(2)过P点作BC的平行线交AB,AC与点D,F。 由于∠APD>∠ATP=∠ADP,

推出AD>AP ①

第 19 页 共 23 页

又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④

由①②③④可得:最大L< 2 ;

由(1)和(2)既得:

≤L<2 。

2.顺时针旋转△BPC 600 ,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小PA+PB+PC=AF。

第 20 页 共 23 页

既得AF=13+(+1)2 = 2+423= 4+23 2 =

2(3+1)2(3+1) = 226+2 。 2 =

3.顺时针旋转△ABP 900 ,可得如下图:

第 21 页 共 23 页

既得正方形边长L = (2+222)+()2ga = 5+22ga 。 22

4.在AB上找一点F,使∠BCF=600 ,

连接EF,DG,既得△BGC为等边三角形, 可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE 。

推出 : △FGE为等边三角形 ,可得∠AFE=800 ,

第 22 页 共 23 页

既得:∠DFG=400 ① 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400 ② 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 。

第 23 页 共 23 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务