您好,欢迎来到尔游网。
搜索
您的当前位置:首页高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)

高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)

来源:尔游网
高考物理动量守恒定律解题技巧和训练方法及练习题(含答案)

一、高考物理精讲专题动量守恒定律

1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.

①求弹簧恢复原长时乙的速度大小;

②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值. 【答案】v乙=6m/s. I=8N 【解析】 【详解】

(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:

又知

,方向向右。

联立以上方程可得

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:

2.如图所示,在倾角30°的斜面上放置一个凹撸B,B与斜面间的动摩擦因数3;槽内6靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d0.1m,A、B的质量都为m=2kg,B与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A、B之间的摩擦,斜面足够长.现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g取10m/s2.求:

(1)释放后物块A和凹槽B的加速度分别是多大?

(2)物块A与凹槽B的左侧壁第一次碰撞后瞬间A、B的速度大小;

(3)从初始位置到物块A与凹糟B的左侧壁发生第三次碰撞时B的位移大小. 【答案】(1)(2)vAn=(n-1)m∙s-1,vBn=\"n\" m∙s-1(3)xn总=0.2n2m 【解析】 【分析】

【详解】

(1)设物块A的加速度为a1,则有mAgsinθ=ma1, 解得a1=5m/s2

凹槽B运动时受到的摩擦力f=μ×3mgcosθ=mg方向沿斜面向上; 凹槽B所受重力沿斜面的分力G1=2mgsinθ=mg方向沿斜面向下; 因为G1=f,则凹槽B受力平衡,保持静止,凹槽B的加速度为a2=0 (2)设A与B的左壁第一次碰撞前的速度为vA0,根据运动公式:v2A0=2a1d 解得vA0=3m/s;

AB发生弹性碰撞,设A与B第一次碰撞后瞬间A的速度大小为vA1,B的速度为vB1,则由动量守恒定律:mvA0mvA12mvB1 ;

121212mvA0mvA2mvB11 222解得vA1=-1m/s(负号表示方向),vB1=2m/s

由能量关系:

3.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量分别为m和.不计重力.

(1)求A在电场中的运动时间t,

(2)若B的电荷量q =Q,求两质点相互作用能的最大值Epm (3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值qm 【答案】(1)【解析】 【分析】 【详解】

解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得

(2)

1QE0d (3)Q 45

运动时间 t ==

(2)设A、B离开电场时的速度分别为vA0、vB0,由动能定理得 QE0d =mqE0d =

A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v, 由动量守恒定律得:(m +)v, = mvA0 +vB0 由能量守恒定律得:EPm= (m且 q =Q

解得相互作用能的最大值 EPm=

+

)—

1QE0d 45(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用 根据动量守恒定律得:mvA+vB= mvA0 +vB0 根据能量守恒定律得:m解得:vB = -+

+

=m

+

+

≥0

因为B不改变运动方向,所以vB = -解得: q≤Q

则B所带电荷量的最大值为:qm =Q

4.一轻质弹簧一端连着静止的物体B,放在光滑的水平面上,静止的物体A被水平速度为v0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A的质量是物体B的

31,子弹的质量是物体B的质量的,求:

44(1)物体A被击中后的速度大小;

质量的

(2)弹簧压缩到最短时B的速度大小。

11v0; (2)vv0 48【答案】(1)v1【解析】 【分析】 【详解】

(1)设子弹射入A后,A与子弹的共同速度为v1,由动量守恒定律可得

113mv0(mm)v1 444解得

1v1v0

4(2)当AB速度相等时,弹簧的压缩量最大,设此时A、B的共同速度为v,取向右为正方向,对子弹、A、B组成的系统,由动量守恒定律可得

113mv0(mmm)v 444解得

1vv0

8

5.如图所示,光滑水平面上依次放置两个质量均为m的小物块A和C以及光滑曲面劈B,B的质量为M=3m,劈B的曲面下端与水平面相切,且劈B足够高,现让小物块C以水平速度v0向右运动,与A发生弹性碰撞,碰撞后小物块A又滑上劈B,求物块A在B上能够达到的最大高度.

23v0【答案】h

8g【解析】

试题分析:选取A、C系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A的速度;A、B系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.

小物块C与A发生弹性碰撞,

由动量守恒得:mv0=mvC+mvA

121212mv0mvCmvA 222联立以上解得:vC=0,vA=v0

由机械能守恒定律得:

设小物块A在劈B上达到的最大高度为h,此时小物块A和B的共同速度大小为

v,对小物块A与B组成的系统,

由机械能守恒得:

121mvAmghmMv2 22水平方向动量守恒mvAmMv

23v0联立以上解得: h

8g点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A、B系统水平方向动量守恒,系统整体动量不守恒.

6.如图所示,光滑半圆形轨道MNP竖直固定在水平面上,直径MP垂直于水平面,轨道半径R=0.5 m.质量为m1的小球A静止于轨道最低点M,质量为m2的小球B用长度为2R的细线悬挂于轨道最高点P.现将小球B向左拉起,使细线水平,以竖直向下的速度v0=4 m/s释放小球B,小球B与小球A碰后粘在一起恰能沿半圆形轨道运动到P点.两球可视为质点,g=10 m/s2,试求:

(1)B球与A球相碰前的速度大小; (2)A、B两球的质量之比m1∶m2. 【答案】(1) 6 m/s(2) 1∶5 【解析】 试题分析:

B球与A球碰前的速度为v1,碰后的速度为v2 B球摆下来的过程中机械能守恒,解得

m/s

碰后两球恰能运动到P点

得vp=gR=5 碰后两球机械能守恒

得v2=5m/s

两球碰撞过程中动量守恒 m2v1=(m1+m2)v2 解得m1:m2=1:5

考点: 机械能守恒定律,动量守恒定律.

7.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知

mAm,mB2m,mC3m,求:

(1)滑块A与滑块B碰撞结束瞬间的速度v; (2)被压缩弹簧的最大弹性势能EPmax; (3)滑块C落地点与桌面边缘的水平距离 s. 【答案】(1)v【解析】 【详解】

解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为v1 ,由机械能守恒定律有:mAgh解之得:v12gh 滑块A与B碰撞的过程,A、B系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:mAv1mAmBv 解之得:v11mgh2v12gh (2)Hh (3)33631mAv12 211v12gh 33(2)滑块A、B发生碰撞后与滑块C一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A、B、C速度相等,设为速度v2 由动量守恒定律有: mAv1mAmBmCv2 由机械能守恒定律有: EPmax12(mAmB)v2mAmBmCv2 21mgh 6解得被压缩弹簧的最大弹性势能:EPmax(3)被压缩弹簧再次恢复自然长度时,滑块C脱离弹簧,设滑块A、B的速度为v3,滑块

C的速度为v4,分别由动量守恒定律和机械能守恒定律有:

mAmBvmAmBv3mCv4

111mAmBv2mAmBv32mCv42 222解之得:v30,v412gh 3滑块C从桌面边缘飞出后做平抛运动:sv4t

H12gt 22Hh 3解之得滑块C落地点与桌面边缘的水平距离:s

8.图中两根足够长的平行光滑导轨,相距1m水平放置,磁感应强度B=0.4T的匀强磁场竖直向上穿过整个导轨所在的空间.金属棒ab、cd质量分别为0.1kg和0.2kg,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3m/s向相反方向分开,不计导轨电阻,求:

(1)金属棒运动达到稳定后的ab棒的速度大小;

(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热; (3)金属棒运动达到稳定后,两棒间距离增加多少? 【答案】(1)1m/s (2)1.2J (3)1.5m 【解析】 【详解】

解:(1)ab、cd棒组成的系统动量守恒,最终具有共同速度v ,以水平向右为正方向,则

解得稳定后的ab棒的速度大小:

(2)根据能量转化与守恒定律,产生的焦耳热为:(3)对cd棒根据动量定理有:即:又

两棒间距离增加:

9.如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连.质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零.现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹

性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求的值.

0

【答案】【解析】

试题分析:小滑块以水平速度v0右滑时,有:fL=0-12mv0(2分) 21212mv1-mv(2分) 22滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v2,

小滑块以速度v滑上木板到运动至碰墙时速度为v1,则有fL=则有mv1=(m4m)v2(2分) 由总能量守恒可得:fL=上述四式联立,解得

1212mv1-(m4m)v2(2分) 22v3(1分) v02考点:动能定理,动量定理,能量守恒定律.

10.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间粗糙,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:

(1)A、B最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向. 【答案】(1)【解析】

试题分析:(1)由A、B系统动量守恒定律得: Mv0—mv0=(M +m)v ① 所以v=方向向右

(2)A向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:

v0

2Mm2Mmv0 v0(2)

2MgMmMv0mv0方向向右 M考点:动量守恒定律;

Mv0—mv0=\"Mv′\"v点评:本题主要考查了动量守恒定律得直接应用,难度适中.

11.如图所示,水平光滑轨道AB与以O点为圆心的竖直半圆形光滑轨道BCD相切于B点,半圆形轨道的半径r=0.30m.在水平轨道上A点静止放置一质量为m2=0.12kg的物块2,现有一个质量m1=0.06kg的物块1以一定的速度向物块2运动,并与之发生正碰,碰撞过程中无机械能损失,碰撞后物块2的速度v2=4.0m/s.物块均可视为质点,g取10m/s2,求:

(1)物块2运动到B点时对半圆形轨道的压力大小; (2)发生碰撞前物块1的速度大小;

(3)若半圆形轨道的半径大小可调,则在题设条件下,为使物块2能通过半圆形轨道的最高点,其半径大小应满足什么条件. 【答案】 【小题1】7.6N 【小题2】6.0m/s 【小题3】0.32m 【解析】

(1)设轨道B点对物块2的支持力为N,根据牛顿第二定律有

N-m2g=m2v22/R 解得 N=7.6N

根据牛顿第三定律可知,物块2对轨道B点的压力大小N′=7.6N

(2)设物块1碰撞前的速度为v0,碰撞后的速度为v1,对于物块1与物块2的碰撞过程,根据动量守恒定律有 m1v0=mv1+m2v2 因碰撞过程中无机械能损失,所以有代入数据联立解得 v0=6.0m/s

(3)设物块2能通过半圆形轨道最高点的最大半径为Rm,对应的恰能通过最高点时的速度大小为v,根据牛顿第二定律,对物块2恰能通过最高点时有 m2g=m2v2/Rm 对物块2由B运动到D的过程,根据机械能守恒定律有 m2v22=m2g•2Rm+

m2v2

m1v02=

m1v12+

m2v22

联立可解得:Rm=0.32m

所以,为使物块2能通过半圆形轨道的最高点,半圆形轨道半径不得大于0.32m

12.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg的小物块A.装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg的小物块B从其上距水平台面高h=0.8m处由静止释放.已知物块B与传送带之间的动摩擦因数0.35,l=1.0m.设物块A、B间发生的是对心弹性碰撞,第一次碰撞前物块A处于静止状态.取g=10m/s2.

(1)求物块B与物块A第一次碰撞前的速度大小; (2)物块A、B间发生碰撞过程中,物块B受到的冲量;

(3)通过计算说明物块B与物块A第一次碰撞后能否运动到右边的曲面上?

(4)如果物块A、B每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.

11【答案】(1)3m/s;(2)2kgm/s;(3)l,所以不能;(4)73【解析】 【分析】

n1m

s物块B沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A、B第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判

断,物块B运动到左边台面是的速度大小为v1,继而与物块A发生第二次碰撞.物块B与物块A第三次碰撞、第四次碰撞…,根据对于的规律求出n次碰撞后的运动速度大小. 【详解】

(1) 设物块B沿光滑曲面下滑到水平位置时的速度大小为v0,由机械能守恒定律可得:

mgh12mv0 2解得:v04m

s设物块B在传送带上滑动过程中因受摩擦力所产生的加速度大小为a,则有:μmg=ma, 设物块B通过传送带后运动速度大小为v,有:v12-v02=-2al,

解得:v1=3m/s>v=1m/s,则物块B与物块A第一次碰撞前的速度大小为3m/s; (2)设物体A、B第一次碰撞后的速度分别为vA、vB,取向右为正方向 由动量守恒定律得:mv1MvAmvB 由机械能守恒定律得:

121212mv1mvBMvA 222解得:vA=-2m/s,vB=1m/s,(vA=0m/s,vB=-3m/s不符合题意,舍去)

m ,方向水平向右; IPmvBmv12kg?s(3) 碰撞后物块B在水平台面向右匀速运动,设物块B在传送带上向右运动的最大位移为l',则有: 0-vB2=-2al′, 解得:l1l 7所以物块B不能通过传送带运动到右边的曲面上;

(4) 当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为vB,继而与物块A发生第二次碰撞 由(2)可知,vB=

1v1 313132同理可得:第二次碰撞后B的速度:vB1=vB()v1 第n次碰撞后B的速度为:vB(n-1)=()v1()【点睛】

本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.

13n13n1m s

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务