0013-4651/2002/5͑7͒/A145/4/$7.00©TheElectrochemicalSociety,Inc.
A145
Charge,Potential,andPhaseStabilityofLayeredLi„Ni0.5Mn0.5…O2
J.ReedandG.Ceder*,z
DepartmentofMaterialsScienceandEngineering,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA
Li(Ni,Mn)O2materialshaverecentlyshownpromiseashighcapacitystableelectrodesforadvancedrechargeablelithiumbatter-ies.Usingfirstprinciplesquantummechanicalenergycomputationswedemonstratethatthestabilityofthesematerialsisduetotheparticularvalencedistributiononthetransitionmetalsinthismaterial.SpindensitycalculationsindicatethattheMnionhasoxidationstateϩ4independentlyoftheLicontentinthematerial,whileNiisoxidizedfromNi2ϩtoNi4ϩuponremovingLi.ThehighinsertionvoltagefortheLiNi0.5Mn0.5O2canbepartlyattributedtothechangeinMn-NiinteractionuponLicycling.©2002TheElectrochemicalSociety.͓DOI:10.1149/1.1480135͔Allrightsreserved.
ManuscriptsubmittedNovember17,2001;revisedmanuscriptreceivedMarch7,2002.AvailableelectronicallyApril25,2002.
Layeredlithium-manganeseoxidesareofinterestforuseinre-chargeablelithiumbatteriesbecauseoftheirpotentialforveryhighcapacity,relativesafety,andaffordability.TheirinherentsafetyisderivedfromthefactthatbothMn3ϩ͑presentattheendofdis-charge͒andMn4ϩ͑attheendofcharge͒arequitestablevalencestates.Whilemanganeseoxideswiththespinelstructureandstoichi-ometryLiMn2O4havebeenusedinbatteries,theircapacityislim-ited,andseverestabilityissuesexistwiththematerial.Layeredlithiummanganeseoxides,ontheotherhand,haveatheoreticalcapacityof288mAh/g.Unfortunately,thelayered␣-NaFeO2struc-tureisnotthegroundstateforLiMnO21andonehastoresorttoeithermetastableprocessingroutes2,3startingfromaNaMnO2,ortocompositionalmodificationstoincreasethestabilityofthelayeredphaseovertheotherpossiblepolytopes.4-7Almostallofthepureorlightlydopedlayeredmanganeseoxideshaveshownarapidtrans-formationtoaspineluponcycling.8,9Whilethisspinelcaninsomecasesmaintaincapacity,10ithasalessfavorablevoltageprofileandtheremainingdisorderinthestructurelimitsitscurrentdensity.Usinghigherdopinglevels,ithasbeenpossibletostabilizethelayeredstructureagainsttransformationtospinel.Inparticular,co-dopingofLiandCr5,11hasbeenparticularlysuccessful.Ni-dopedMnmaterialswerefirstsynthesizedseveralyearsago,12,13butthisapproachhasgainedrenewedinterestnowthatgoodcyclingbehav-iorforthesematerialshasbeendemonstrated.5,14
Someuncertaintyexistswithregardstothevalencestatesinthesemixed-metalcompounds.InLi(Li,Cr,Mn)O2theobservedca-pacitycouldonlybeexplainedbythecyclingofCr3ϩtoCr6ϩ,5afactlaterconfirmedwithX-rayabsorptionspectroscopy.15InLiNi0.5Mn0.5O2ithasbeenspeculated5,14thattheNiandMnions,respectively,havevalenceϩ2andϩ4,thoughearlierworkbySpahr13assumedbothNiandMntohavevalenceϩ3inthestartingmaterial.BecausethecapacityofLiNi0.5Mn0.5O2isϾ200mAh/g,theassumptionofNi2ϩandMn4ϩinthestartingmaterialrequiresthatthenickelioncyclesbetweenNi2ϩandNi4ϩ.ThepurposeofthispaperistoclarifythevalencestatesinLiNi0.5Mn0.5O2andcharacterizetheelectronicandstructuralchangesthatoccurupondelithiation.Theoriginforthehighpotentialofthismaterialisalsodiscussed.Theenergies,intercalationpotentials,geometries,andelectronicstructureoftheLixNi0.5Mn0.5O2materialsareobtainedusingfirstprinciplesquantummechanicalcomputationsinthegen-eralizedgradientapproximationtodensityfunctionaltheory.Ultra-softpseudopotentialsandthePerdew-Wangexchangecorrelationfunctionwereused,asimplementedinVASP.16Allcalculationswereperformedwithspinpolarization,previouslydemonstratedtobecrucialinmanganeseoxides.1Reasonableintercalationpotentials
*ElectrochemicalSocietyActiveMember.
z
E-mail:gceder@mit.edu
andgeometricalinformationcanbeobtainedwithfirstprinciplesmethods,ashasbeenamplydemonstrated.17-19TodescribetheLiNi0.5Mn0.5O2system,asupercellwithtwoformulaunitswasused.Becausethiscomputationalapproachrequirestheuseofperiodiccells͑asdomostcomputationalmethods͒,theMnandNiarelong-rangeorderedinrowsonthetriangularlatticeoftransitionmetalsites.Inallcells,thesymmetrywasloweredenough͑lowerthanthatassociatedwithLi/vacancyorNi/Mnorderingalone͒sothatJahn-Tellerdistortionscouldtakeplaceifenergeticallyfavorable.Inprac-tice,thismeansthatthesymmetryisalwaysasubgroupoftheC2/mgroupofthemonocliniclayeredLiMnO2.
Thevalencestateofahigh-spintransitionmetalioncanbestbedeterminedbyintegratingthespin-polarizationdensityinaspherearoundtheion.Integratingspindensityismuchmoreeffectivethanintegratingthechargedensity,astheformerfiltersouttheelectroniccontributionfromtheoxygenp-stateswhichusuallycarryverylittlenetelectronspin.Fortherelevantions,Mn4ϩ,Mn3ϩ,andMn2ϩ,weexpectatotalelectronspincountof,respectively,3,4,and5͑inunitsof1/2B͒.ForNi4ϩ,Ni3ϩ,andNi2ϩweexpect0,1,and2,respectively,electronspinsastheNi4ϩhasacoreofnonspinpolar-ized,fullt2glevels.Figure1ashowstheintegratedspinasfunctionofintegrationradiusaroundNiandMnintheLiNi0.5Mn0.5O2struc-ture.Theintegratedmomentincreasessteeplyasweintegratethroughthed-statesofthemetalion,butthenreachesaplateauvaluebecausethechargedensityoftheoxygenionsdoesnotcon-tributetothespindensity.Afterthisplateautheintegratedvalueincreasesagainasspinfromneighboringtransitionmetalsispickedup.TheMnioninLiNi0.5Mn0.5O2clearlycarriesthreeelectrons,correspondingtoavalenceofMn4ϩ.ThemomentaroundNiisslightlybelowwhatisexpectedforNi2ϩ.Theremainderofthemomentisprobablyontheoxygenionsasistypicalfornickeloxides.SomeevidenceforthisliesinthefactthatthepointwheretheintegratedspindensityrisesfromtheplateauvalueisatashorterradiusthanfortheMn4ϩion.ThespinintegrationinFig.1aindi-catesthattheformalvalencestatesareLiNi0.5IIMn0.5IVO2.Furtherevidencecanbefoundfromthechangesinspindensityuponlithiumremoval.Figure1bshowssimilarspinintegrationsforthedelithiatedmaterialNi0.5Mn0.5O2.ThespinonMnisbarelydiffer-entfromwhatitisinthefullylithiatedmaterial,whileNihaslostmostofitsmoment,consistentwiththeelectronconfigurationforNi4ϩinNi0.5Mn0.5O2.Figure1aandbofferstrongevidencethatinLiNi0.5Mn0.5O2thecorrectvalenceassignmentisNi2ϩandMn4ϩ.UponLiremovalNiϩ2isoxidizedtoNi4ϩwhiletheMn4ϩionremainsunchanged.
TheselectiveoxidationofNiinthesematerialsisalsoconsistentwiththemetal-oxygenbondlengthvariationspredictedfromthecomputations͑Fig.2͒.Ni-OandMn-OareseparatelyshowninLiNi0.5Mn0.5O2,Li0.5Ni0.5Mn0.5O2,andNi0.5Mn0.5O2.Theverticalbarsontheresultindicatethevariationinbondlengthinthestruc-
Downloaded on 2014-08-03 to IP 59.50.85.29 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
A146ElectrochemicalandSolid-StateLetters,5͑7͒A145-A148͑2002͒
Figure2.PlotofNi-O͑-•-͒andMn-O͑͒bondlengthsasafunctionoflithiumcontent.CalculationsperformedatcompositionsofLiNi1/2Mn1/2O2,Li1/2Ni1/2Mn1/2O2,andNi1/2Mn1/2O2.Thedatapointscorrespondtotheav-eragebondlengthswhilethebarsateachpointindicatethespreadbetweenthemaximumandminimumbondlengths.Notethatat1/2lithiumcontenttheminimumNi-ObondlengthislessthantheminimumMn-Obondlength,whilethemaximumNi-ObondlengthisgreaterthanthemaximumMn-Obondlength.ThisisduetotheNi3ϩundergoingaJahn-Tellerdistortion.
Figure1.͑a͒Integratedspinasafunctionofintegrationradius͑Å͒aroundNiandMninLiNi1/2Mn1/2O2.͑b͒Integratedspinasafunctionofintegrationradius͑Å͒aroundNiandMninNi1/2Mn1/2O2.
turebecausethesymmetryofoursupercell͑lowerthanR¯3m͒allowsforslightlydifferentbondlengthsinagivenoctahedron.TheMn-ObondlengthhardlyvarieswithLicomposition,confirmingthatlittleornochangetoitsvalencestateoccurs.Incontrast,theNi-ObondlengthchangesdramaticallywithLicomposition.Forthedelithiatedmaterial,theNi-Obondlengthisaround1.90Å,verytypicalofNi4ϩ.20,21TheverylargespreadinNi-OdistancesatxLiϭ0.5isduetotheJahn-TellerdistortionaroundNi3ϩion.TheJahn-TellerdistortionisofthepositiveQ3type,22sothattherearefourshortandtwolongbonds.Inarealmaterial,thespreadinbondlengthsmaybesomewhatlessduetothedisorderoftheNi/Mnions.TableIshowsthecalculatedandexperimentallymeasuredlatticeparameters.Thecalculatednumbersaresomewhatlargerthanthosemeasured,asisoftenthecaseforcomputationsinthegeneralizedgradientapproximation.
WehavealsocalculatedtheaveragedischargepotentialforthesystemLiNi0.5Mn0.5O2/Ni0.5Mn0.5O2.Thesearecomparedtoex-perimentaldatainTableII.Thecalculatedpotentialsarebelowtheexperimentalvalues,asistypicalwithstandardfirstprinciplesen-ergymethods.17Hence,tomakeabetterpredictionpossible,wehaveestimatedacorrectionbasedonthedifferencebetweenmea-suredandcalculatedpotentialsforLiNiO2.Thiscorrection(ϩ0.73V)isaddedtothecalculatedpotentialtogivetheresultinthelastcolumn.Weemphasizethatthisadjustmentispurelyphe-nomenologicalandforthepurposeoffacilitatingthedirectcompari-sonwithexperimentsforLiNi0.5Mn0.5O2.ThedatainthiscolumnagreeswellwiththemeasuredvaluesforLiNi0.5Mn0.5O2.InthelastrowofthetablethepotentialisbrokendownintotheaveragefortheintervalLiNi0.5Mn0.5O2toLi0.5Ni0.5Mn0.5O2,andLi0.5Ni0.5Mn0.5O2toNi0.5Mn0.5O2.Someindicationofthevariationofpotentialuponchargecanbederivedfromthis.
TableIIhighlightsthefactthatthepotentialofLiNi0.5Mn0.5O2isactuallyveryclosetothatofLiNiO2.Thisissurprisingbecauseourresultsindicatethatdifferentredoxcouplesareactiveinbothmate-rials.InLiNiO2onlyNi3ϩ/Ni4ϩisactive,whilebothNi2ϩ/Ni3ϩandNi3ϩ/Ni4ϩoccurinLiNi0.5Mn0.5O2.HencetheaveragepotentialforLiNi0.5Mn0.5O2shouldbelowerthanforLiNiO2.Evenifonebe-
TableI.Comparisonofexperimentalwithcalculatedlatticeparameters.ExperimentalandcalculatedlatticeparametersCompLiMnO2
LiMn1/2Ni1/2O2
Structure͑exporcalc͒C2/mlayered
exp.calc.
rhombohedrallayered
exp.͑1͒exp.͑2͒calc.
rhombohedrallayered
exp.͑1͒exp.͑2͒calc.
Latticeparameters
aϭ5.44Åbϭ2.81Åcϭ5.38Åϭ116°aϭ5.58Åbϭ2.83Åcϭ5.49Åϭ117°
aϭ2.2Åcϭ14.301Åaϭ2.4Åcϭ14.277Åaϭ2.914Åcϭ14.398Åaϭ2.885Åcϭ14.197Åaϭ2.4Åcϭ14.226Åaϭ2.943Åcϭ14.287Å
LiNiO2
Downloaded on 2014-08-03 to IP 59.50.85.29 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
ElectrochemicalandSolid-StateLetters,5͑7͒A145-A148͑2002͒A147
TableII.ComparisonbetweencalculatedandmeasuredaveragedischargepotentialsfortheLiNi0.5Mn0.5O2andLiNiO2systems.ThelastcolumnincludesacorrectiontothecomputedvoltagebasedonthedifferencebetweencalculationandexperimentforpureLiNiO2.Thelasttworowsofthetableshowthepredictedaveragepotentialsinthefirstandlasthalfofthedischarge.
Calculated
LiNiO2
LiNi0.5Mn0.5O2LiNi0.5Mn0.5O2
3.173.22
0.5ϽxliϽ1
2.94
0ϽxliϽ0.5
3.51
Experimental3.9͓28͔3.9͓14͔
0.5ϽxliϽ1
3.67
Adjusted3.93.95
0ϽxliϽ0.5
4.24
lievedthatMnparticipatesintheredoxprocessthehigherpotentialisdifficulttoexplain,sincetheMn3ϩ/Mn4ϩcoupleisbelowthatofNi3ϩ/Ni4ϩ.Theseexperimentalandtheoreticalresultsarefurtherevidencethatstronginteractionsexistbetweentheredoxcouplesofmetalswhentheyaremixed.23Ingeneralalloytheory,24ameasureoftheeffectiveNi-MninteractionscanbeobtainedbycomparingtheenergyofLiNi0.5Mn0.5O2totheaverageenergyofLiNiO2andLiMnO2.If⌬EmixϭE(LiNi0.5Mn0.5O2)Ϫ1/2͓E(LiNiO2)ϩE(LiMnO2)͔isnegative,NiandMnhaveaneffectiveattractiveinteractionandthesystemwillbeeitherrandomlymixedorordered,dependingonthestrengthoftheinteractionandthepreparationtemperature.If⌬Emixispositive,localphaseseparationintoMnandNirichregionsisenergeticallypreferred,thoughrandommixingmaybeachievedifthesynthesistemperatureishighenough.FromcalculatingtherelevantenergynumbersintheaboveequationwefindthatforLiNi0.5Mn0.5O2⌬EmixisϪ216meVperformulaunit,indicatingastrongordering͑attractive͒tendencybetweenNiandMn.Similarly,forthedelithiatedmaterial⌬EmixϭE(Ni0.5Mn0.5O2)Ϫ1/2͓E(NiO2)ϩE(MnO2)͔iscomputedtobeϩ50meV,indicatingrepulsiveNi-Mninteractions.Theseresultsgivesomeinsightastowhythevoltageishigherthanmaybeexpectedforthissystem.Ni-Mninteractionsgofrombeingattrac-tiveinLiNi0.5Mn0.5O2tobeingrepulsiveinNi0.5Mn0.5O2.Hence,toremovelithiumonenotonlyhastosupplythebindingenergyfortheLiionandelectron,butalsothestrongenergyincreaseinthesystemduetotheMn-Nibondsbecomingunfavorable͑asthatinteractionturnsfromattractivetorepulsive͒.Itcanbeeasilydeducedthattheeffectofchangesinthemetal-metalinteractionsupontheaveragedischargepotentialisgivenby
⌬ϭ⌬Emix͑XLiϭ1͒Ϫ⌬Emix͑XLiϭ0͒
whereistheequilibriumpotentialovertherange0ϽxLiϽ1.FortheLiNi0.5Mn0.5O2system,thisresultindicatesthatthepotentialisraisedbyabout266mVoverwhatwouldbeexpectedifnoNi-Mninteractionswerepresent͑e.g.,ifNi2ϩ/Ni4ϩactedinapurehost,withoutthepresenceofMn͒.Thesenumbersarederivedfromcal-culationsonanorderedsupercellofNiandMn.WehaveestimatedthatiftheNiandMnionswerefullyrandomized͑ratherthanor-deredinthesupercellthatweusedforthecalculations͒theincreaseinpotentialwouldbeslightlylessandabout200mV.
TheeffectofLiontheNi-Mninteractionscanbeeasilyunder-stood,usingwhatisknownaboutthemiscibilityofoxides.25Theeffectiveinteraction,forstudyingphasestabilityandmixingisnotthebareionicinteractionbuttheenergydifferencebetweentheav-erageofidenticalpairs͑i.e.,Ni-NiandMn-Mn͒anddifferentpairs͑i.e.,Ni-Mn͒.HencethesimplestwaytosamplethisdifferenceistoconsiderthedifferenceinenergybetweenLiNi0.5Mn0.5O2͑whereNi-Mnbondsarepresent͒andLiNiO2͑withNi-Nibonds͒andLiMnO2͑withMn-Mnbonds͒.Inthedelithiatedstate,NiandMnhavethesameϩ4valenceandthereisnonetelectrostaticinterac-tionforexchangingtheirpositions.Itcanbeshownthatforsuchiso-valentions,thenetinteractionisduetosizeeffects,andisal-waysrepulsive.26Thisagreeswithourresultofapositivemixingenergyinthedelithiatedstate.Ontheotherhand,inthelithiated
materialthedifferentvalenceofNiandMnleadstoastrongeffec-tiveattractiveinteractionandhenceexplainstheorderingormixingtendency.
OurresultsconclusivelyindicatethatinLiNi0.5Mn0.5O2͑andhenceintherelatedsystemsLi͓NixLi(1/3Ϫ2x/3)Mn(2/3Ϫx/3)͔O2͒14NiistheelectrochemicallyactiveionandcyclesbetweenNi2ϩandNi4.Thematerialremainskineticallystableagainsttransformationtospi-nelbecauseMnisnotpresentinoxidationstateslowerthanϩ4.WerecentlyshowedthattheveryrapidtransformationoflayeredLiMnO2tospinelisduetotheeasewithwhichMn3ϩdispropor-tionatestoMn2ϩandMn4ϩ.27ThisallowsMntorapidlymigratethroughtetrahedralsitesasMn2ϩ.Mn4ϩ,ontheotherhand,wasshowntohaveaveryhighactivationbarrierfordiffusionthroughthetetrahedralsite.Hence,layeredoxideswithonlymanganeseinthe4ϩoxidationstateareexpectedtobequitestable.IncyclingbetweenLiNi0.5Mn0.5O2andNi0.5Mn0.5O2theNi-Mnarrangementremainsfixedduetothelackofanytransitionmetalmobilityatroomtemperature,buttheinteractionsbetweentheionschangecon-siderably.Inthissystem,thischangeinNi-MninteractionscausesthevoltagetoincreasefortheNi2ϩ/Ni4coupleoverwhatitwouldbeinanoninteractingmatrix.
TheclassofmaterialsinwhichthevalenceofNiisϩ2andMnisϩ4seemstopossessmanydesirablefeaturesforacathodema-terial.Theyalsopointatnewandinterestingdirectionsforcathoderesearch.Thecombinationofexperimentaldataonhighlydopedsystems,andourunderstandingoftheroleofMn3ϩintheproblemsofmanyMn-oxides,clearlyindicatesthatstablelayeredMnoxides,containingonlyMn4ϩcanbemade.InthesematerialsMnhasgivenupitsroleasanelectrochemicallyactivecenterandispresentonlyas‘‘filler.’’Hence,otherelementsthatcantakeontheϩ4oxidationstateinthelayeredoxideenvironment,couldbeselectedonthebasisofcost,weight,processability,environmentalbehavior,etc.,asasubstituteforMn.
Acknowledgments
TheauthorsacknowledgethesupportoftheNationalScienceFoundation͑MRSECProgram͒undercontractno.DMR98-041.DiscussionswithDaneMorgan,ElenaArroyo,andAntonVanderVenwerehelpfulindevelopingtheideasinthispaper.ComputingresourcesfromNPACItheNationalPartnershipforAdvancedCom-putingInfrastructure͑NSF͒aregratefullyacknowledged.
TheMassachusettsInstituteofTechnologyassistedinmeetingthepubli-cationcostsofthisarticle.
References
1.2.3.4.5.6.7.8.9.
S.K.MishraandG.Ceder,Phys.Rev.B,59,6120͑1999͒.
F.Capitaine,P.Gravereau,andC.Delmas,SolidStateIonics,,197͑1996͒.A.R.ArmstrongandP.G.Bruce,Nature(London),381,499͑1996͒.
I.J.Davidson,R.S.McMillan,H.Slegr,B.Luan,I.Kargina,J.J.Murray,andI.P.Swainson,J.PowerSources,82,406͑1999͒.
B.AmmundsenandJ.Paulsen,Adv.Mater.,13,943͑2001͒.
Y.-I.Jang,B.Huang,Y.-M.Chiang,andD.R.Sadoway,Electrochem.Solid-StateLett.,1,13͑1998͒.
B.Ammundsen,J.Desilvestro,T.Groutso,D.Hassell,J.B.Metson,E.Regan,R.Steiner,andP.J.Pickering,J.Electrochem.Soc.,147,4078͑2000͒.
H.Wang,Y.-I.Jang,andY.-M.Chiang,Mater.Res.Soc.Symp.Proc.,548,143͑1999͒.
Y.Shao-Horn,S.A.Hackney,A.R.Armstrong,P.G.Bruce,R.Gitzendanner,C.S.
Downloaded on 2014-08-03 to IP 59.50.85.29 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
A148ElectrochemicalandSolid-StateLetters,5͑7͒A145-A148͑2002͒
21.L.Croguennec,C.Pouillerle,andC.Delmas,J.Electrochem.Soc.,147,1314
͑2000͒.
22.C.A.Marianetti,D.Morgan,andG.Ceder,Phys.Rev.B,63,1͑2001͒.
23.G.Ceder,Y.-M.Chiang,D.R.Sadoway,M.K.Aydinol,Y.-I.Jang,andB.Huang,
Nature(London),392,694͑1998͒.
24.D.deFontaine,inSolidStatePhysics,Vol.47,H.Ehrenreich,andD.Turnbull,
Editors,p.33,AcademicPress,NewYork͑1994͒.
25.G.Ceder,A.VanderVen,C.Marianetti,andD.Morgan,Modell.Simul.Mater.Sci.
Eng.,8,311͑2000͒.
26.P.D.Tepesch,A.F.Kohan,G.D.Garbulsky,G.Ceder,C.Coley,H.T.Stokes,L.
L.Boyer,M.J.Mehl,B.Burton,K.Cho,andJ.Joannopoulos,J.Am.Ceram.Soc.,79,2033͑1996͒.
27.J.Reed,A.VanderVen,andG.Ceder,Electrochem.Solid-StateLett.,4,A78
͑2001͒.
28.C.Delmas,J.P.Peres,A.Rougier,A.Demourgues,F.Weill,A.Chadwick,M.
Broussely,F.Perton,P.Biensan,andP.Willmann,J.PowerSources,68,120͑1997͒.
Johnson,andM.M.Thackeray,J.Electrochem.Soc.,146,2404͑1999͒.
10.Y.-M.Chiang,D.R.Sadoway,Y.-I.Jang,B.Huang,andH.Wang,Electrochem.
Solid-StateLett.,2,107͑1999͒.
11.C.Storey,I.Kargina,Y.Grincourt,I.J.Davidson,Y.C.Yoo,andD.Y.Seung,J.
PowerSources,97-98,541͑2001͒.
12.E.Rossen,C.D.W.Jones,andJ.R.Dahn,SolidStateIonics,57,311͑1992͒.13.M.E.Spahr,P.Novak,B.Schneyder,O.Haas,andR.Nesper,J.Electrochem.Soc.,
145,1113͑1998͒.
14.Z.Lu,D.D.MacNeil,andJ.R.Dahn,Electrochem.Solid-StateLett.,4,A191
͑2001͒.
15.B.Ammundsen,J.M.Paulsen,andI.J.Davidson,Unpublishedresults͑2001͒.
¨ller,Comput.Mater.Sci.,6,15͑1996͒.16.G.KresseandJ.Furthmu
17.M.K.Aydinol,A.F.Kohan,G.Ceder,K.Cho,andJ.Joannopoulos,Phys.Rev.B,
56,1354͑1997͒.
18.A.VanderVen,M.K.Aydinol,G.Ceder,G.Kresse,andJ.Hafner,Phys.Rev.B,
58,2975͑1998͒.
19.C.WolvertonandA.Zunger,Phys.Rev.Lett.,81,660͑1998͒.
20.A.N.Mansour,X.Q.Yang,X.Sun,J.McBreen,L.Croguennec,andC.Delmas,
J.Electrochem.Soc.,147,2104͑2000͒.
Downloaded on 2014-08-03 to IP 59.50.85.29 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务