您好,欢迎来到尔游网。
搜索
您的当前位置:首页特征工程:归一化、特征组合、高维特征降解

特征工程:归一化、特征组合、高维特征降解

来源:尔游网

特征工程

归一化 (Normalization)

常用方法有两种:

当然这是针对单个特征而言的,采用batch训练的归一化还有Batch Normalization、Layer Normalization、Weight Normalization等。

为什么需要归一化?

在使用梯度下降算法的场景下,归一化将可以加速收敛。

这仅仅对使用梯度下降的优化算法适用,决策树等模型则不适用。因为决策树进行节点时主要依据数据集D关于特征x的信息增益比,信息增益比跟是否归一化无关。

特征组合

可以将一阶特征两两组合,构成高维特征。

进一步扩展这一概念,可以将高维特征缩放到较低维度,来降低对高维参数的需求(高维参数一般很难学习,甚至学习不到)。

如何找到有效的组合特征?

利用决策树。决策树怎么来,可以采用梯度提升决策树,核心思想是每次在之前构建的决策树的残差上构建下一颗决策树。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- axer.cn 版权所有 湘ICP备2023022495号-12

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务